Open Access
Issue
Parasite
Volume 32, 2025
Article Number 42
Number of page(s) 18
DOI https://doi.org/10.1051/parasite/2025035
Published online 04 July 2025
  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25. [Google Scholar]
  2. Al Khoury C, Nemer G, Guillot J, Tokajian S. 2022. Absolute quantification of gene expression in drug discovery using RT-qPCR: Case of a drug used in the treatment of leishmaniasis. Research in Veterinary Science, 153, 17–22. [Google Scholar]
  3. Al Khoury C, Nemer N, Nemer G. 2021. Beauvericin potentiates the activity of pesticides by neutralizing the ATP-binding cassette transporters in arthropods. Scientific Reports, 11, 10865. [Google Scholar]
  4. Al Khoury C, Thoumi S, Tokajian S, Sinno A, Nemer G, Beyrouthy ME, Rahy K. 2024. ABC transporter inhibition by beauvericin partially overcomes drug resistance in Leishmania tropica . Antimicrobial Agents and Chemotherapy, 68, 1368. [Google Scholar]
  5. Al Khoury C, Tokajian S, Nemer N, Nemer G, Rahy K, Thoumi S, Samra LA, Sinno A. 2024. Computational applications: Beauvericin from a mycotoxin into a humanized drug. Metabolites, 14, 232. [Google Scholar]
  6. Alasaad S. 2013. War diseases revealed by the social media: massive leishmaniasis outbreak in the Syrian Spring. Parasites & Vectors, 6, 94. [Google Scholar]
  7. Al-Azzam SI, Fleckenstein L, Cheng K-J, Dzimianski MT, McCall JW. 2007. Comparison of the pharmacokinetics of moxidectin and ivermectin after oral administration to beagle dogs. Biopharmaceutics & Drug Disposition, 28, 431–438. Available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Google Scholar]
  8. Andrews S. 2022. FastQC: a quality control tool for high throughput sequence data, Version 0.11.9.2010. Available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Google Scholar]
  9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT. 2000. Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25–29. [Google Scholar]
  10. Awasthi A, Razzak M, Al-Kassas R, Harvey J, Garg S. 2013. Analytical profile of moxidectin. Profiles of Drug Substances, Excipients and Related Methodology, 38, 315–366. [Google Scholar]
  11. Bamorovat M, Sharifi I, Oliaee RT, Jafarzadeh A, Khosravi A (2021) Determinants of unresponsiveness to treatment in cutaneous leishmaniasis: a focus on anthroponotic form due to Leishmania tropica . Frontiers in Microbiology, 12, 638957. [Google Scholar]
  12. Barsoum RS. 2013. Parasitic kidney disease: milestones in the evolution of our knowledge. American Journal of Kidney Diseases, 61, 501–513. [Google Scholar]
  13. Berenstein AJ, Magariños MP, Chernomoretz A, Agueero F. 2016. A multilayer network approach for guiding drug repositioning in neglected diseases. PLoS Neglected Tropical Diseases, 10, e0004300. [Google Scholar]
  14. Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R. 2011. Differential expression of proteins in antimony-susceptible and-resistant isolates of Leishmania donovani . Molecular and Biochemical Parasitology, 179, 91–99. [Google Scholar]
  15. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. [CrossRef] [PubMed] [Google Scholar]
  16. Brochu C, Haimeur A, Ouellette M. 2004. The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania . Cell Stress & Chaperones, 9, 294. [Google Scholar]
  17. Costa-da-Silva AC, Nascimento D de O, Ferreira JR, Guimarães-Pinto K, Freire-de-Lima L, Morrot A, Decote-Ricardo D, Filardy AA, Freire-de-Lima CG. 2022. Immune responses in leishmaniasis: an overview. Tropical Medicine and Infectious Disease, 7, 54. [Google Scholar]
  18. Craven J, Bjørn H, Hennessy D, Friis C, Nansen P. 2001. Pharmacokinetics of moxidectin and ivermectin following intravenous injection in pigs with different body compositions. Journal of Veterinary Pharmacology and Therapeutics, 24, 99–104. [Google Scholar]
  19. Dey R, Meneses C, Salotra P, Kamhawi S, Nakhasi HL, Duncan R. 2010. Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Molecular Microbiology, 77, 399–414. [Google Scholar]
  20. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ. 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67, 2576–2597. [Google Scholar]
  21. El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. 2017. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Neuroproteomics: Methods and Protocols, 1598, 391–403. [Google Scholar]
  22. Fernández OL, Diaz-Toro Y, Ovalle C, Valderrama L, Muvdi S, Rodríguez I, Gomez MA, Saravia NG. 2014. Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS Neglected Tropical Diseases, 8, e2871. [Google Scholar]
  23. Ferroglio E, Poggi M, Trisciuoglio A. 2008. Evaluation of 65% permethrin spot-on and deltamethrin-impregnated collars for canine Leishmania infantum infection prevention. Zoonoses and Public Health, 55, 145–148. [Google Scholar]
  24. Flannery AR, Renberg RL, Andrews NW. 2013. Pathways of iron acquisition and utilization in Leishmania . Current Opinion in Microbiology, 16, 716–721. [Google Scholar]
  25. Fonteles RS, Filho AAP, Moraes JLP, Pereira SRF, Rodrigues BL, Rebêlo JMM. 2018. Detection of Leishmania DNA and blood meal identification in sand flies (Diptera: Psychodidae) from Lençois Maranhenses national park region, Brazil. Journal of Medical Entomology, 55, 445–451. [Google Scholar]
  26. Geurden T, Chartier C, Fanke J, Regalbono AFD, Traversa D, von Samson-Himmelstjerna G, Demeler J, Vanimisetti HB, Bartram DJ, Denwood MJ. 2015. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. International Journal for Parasitology: Drugs and Drug Resistance, 5, 163–171. [Google Scholar]
  27. Habela CW, Ernest NJ, Swindall AF, Sontheimer H. 2009. Chloride accumulation drives volume dynamics underlying cell proliferation and migration. Journal of Neurophysiology, 101, 750–757. [Google Scholar]
  28. Hendrickx S, Boulet G, Mondelaers A, Dujardin JC, Rijal S, Lachaud L, Cos P, Delputte P, Maes L. 2014. Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum . Parasitology Research, 113, 1875–1881. [Google Scholar]
  29. Hendrickx S, Mondelaers A, Eberhardt E, Delputte P, Cos P, Maes L. 2015. In vivo selection of paromomycin and miltefosine resistance in Leishmania donovani and L. infantum in a Syrian hamster model. Antimicrobial Agents and Chemotherapy, 59, 4714–4718. [Google Scholar]
  30. Hepburn NC. 2000. Cutaneous leishmaniasis. Clinical and Experimental Dermatology, 25, 363–370. [Google Scholar]
  31. Huynh C, Sacks DL, Andrews NW. 2006. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. Journal of Experimental Medicine, 203, 2363–2375. [Google Scholar]
  32. Jain SK, Sahu R, Walker LA, Tekwani BL. 2012. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. Journal of Visualized Experiments, 70, 4054. [Google Scholar]
  33. Jhingran A, Chawla B, Saxena S, Barrett MP, Madhubala R. 2009. Paromomycin: uptake and resistance in Leishmania donovani . Molecular and Biochemical Parasitology, 164, 111–117. [Google Scholar]
  34. Jimenez V, Mesones S. 2022. Down the membrane hole: Ion channels in protozoan parasites. PLoS Pathogens, 18, e1011004. [Google Scholar]
  35. Khalil S, Abbas O, Kibbi AG, Kurban M. 2017. Scabies in the age of increasing drug resistance. PLoS Neglected Tropical Diseases, 11, e0005920. [Google Scholar]
  36. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14, 1–13. [Google Scholar]
  37. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W. 2000. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897. [Google Scholar]
  38. Kumari R, Kumar R, Consortium OSDD, Lynn A. 2014. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. [Google Scholar]
  39. Laing R, Gillan V, Devaney E. 2017. Ivermectin – old drug, new tricks? Trends in Parasitology, 33, 463–472. [Google Scholar]
  40. Laranjeira-Silva MF, Wang W, Samuel TK, Maeda FY, Michailowsky V, Hamza I, Liu Z, Andrews NW. 2018. A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity. PLoS Pathogens, 14, e1007140. [Google Scholar]
  41. Lum BL, Fisher GA, Brophy NA, Yahanda AM, Adler KM, Kaubisch S, Halsey J, Sikic BI. 1993. Clinical trials of modulation of multidrug resistance pharmacokinetic and pharmacodynamic considerations. Cancer, 72, 3502–3514. [Google Scholar]
  42. Luque-Ortega JR, Rivas L. 2007. Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy, 51, 1327–1332. [Google Scholar]
  43. Majoor A, Michel G, Marty P, Boyer L, Pomares C. 2025. Leishmaniases: strategies in treatment development. Parasite, 32, 18. [Google Scholar]
  44. Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. 2019. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology, 146, 1–27. [Google Scholar]
  45. Ménard G, Rouillon A, Cattoir V, Donnio P-Y. 2021. Galleria mellonella as a suitable model of bacterial infection: past, present and future. Frontiers in Cellular and Infection Microbiology, 11, 782733. [Google Scholar]
  46. Mezzatesta C, Abduli L, Guinot A, Eckert C, Schewe D, Zaliova M, Vinti L, Marovca B, Tsai Y-C, Jenni S. 2020. Repurposing anthelmintic agents to eradicate resistant leukemia. Blood Cancer Journal, 10, 72. [Google Scholar]
  47. Mukherjee S, Santara SS, Das S, Bose M, Roy J, Adak S. 2012. NAD (P) H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. Journal of Biological Chemistry, 287, 34992–35003. [Google Scholar]
  48. Noël F, Pimenta PHC, Santos ARD, Tomaz ECL, Quintas LEM, Kaiser CR, Silva CLM, Férézou J-P. 2011. Δ2,3-ivermectin ethyl secoester, a conjugated ivermectin derivative with leishmanicidal activity but without inhibitory effect on mammalian P-type ATPases. Naunyn-Schmiedeberg’s Archives of Pharmacology, 383, 101–107. [Google Scholar]
  49. Park YS, Kang SB, Marchelletta RR, Penrose HM, Ruiter-Visser R, Jung B, Docherty MJ, Boland BS, Sandborn WJ, McCole DF. 2023. The ClC-2 chloride channel activator, lubiprostone, improves intestinal barrier function in biopsies from Crohn’s disease but not ulcerative colitis patients. Pharmaceutics, 15, 811. [Google Scholar]
  50. Patino LH, Ramírez JD. 2017. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. Infection, Genetics and Evolution, 49, 273–282. [Google Scholar]
  51. Pereira MF, Rossi CC, da Silva GC, Rosa JN, Bazzolli DMS. 2020. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathogens and Disease, 78, ftaa056. [Google Scholar]
  52. Pérez-Victoria FJ, Castanys S, Gamarro F. 2003. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrobial Agents and Chemotherapy, 47, 2397–2403. [Google Scholar]
  53. Pérez-Victoria JM, Bavchvarov BI, Torrecillas IR, Martínez-García M, López-Martín C, Campillo M, Castanys S, Gamarro F. 2011. Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania . Antimicrobial Agents and Chemotherapy, 55, 3838–3844. [Google Scholar]
  54. Perier N, Lebon W, Meyer L, Lekouch N, Aouiche N, Beugnet F. 2019. Assessment of the insecticidal activity of oral afoxolaner against Phlebotomus perniciosus in dogs. Parasite, 26, 63. [Google Scholar]
  55. Pickering AM, Davies KJ. 2012. Degradation of damaged proteins: the main function of the 20S proteasome. Progress in Molecular Biology and Translational Science, 109, 227–248. [Google Scholar]
  56. Ponte-Sucre A, Campos Y, Fernandez M, Moll H, Mendoza-León A. 1998. Leishmania sp.: growth and survival are impaired by ion channel blockers. Experimental Parasitology, 88, 11–19. [Google Scholar]
  57. Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. 2017. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 11, e0006052. [Google Scholar]
  58. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C. 2019. Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery, 18, 41–58. [Google Scholar]
  59. Rasheid KA, Morsy TA. 1998. Efficacy of ivermectin on the infectivity of Leishmania major promastigotes. Journal of the Egyptian Society of Parasitology, 28, 207–212. [Google Scholar]
  60. Roatt BM, Cardoso JM de O, Brito RCFD, Coura-Vital W, Aguiar-Soares RD de O, Reis AB. 2020. Recent advances and new strategies on leishmaniasis treatment. Applied Microbiology and Biotechnology, 104, 8965–8977. [Google Scholar]
  61. Rowland T, Davidson SA, Kobylinski K, Menses C, Rowton E. 2015. Efficacy of permethrin treated bed nets against Leishmania major infected sand flies. US Army Medical Department Journal, Jul-Sep: 10-5. PMID: 26276941. [Google Scholar]
  62. Saini I, Joshi J, Kaur S. 2024. Leishmania vaccine development: A comprehensive review. Cellular Immunology, 399–400, 104826. [Google Scholar]
  63. Salloum T, Moussa R, Rahy R, Deek JA, Khalifeh I, Hajj RE, Hall N, Hirt RP, Tokajian S. 2020. Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Neglected Tropical Diseases, 14, e0008684. [Google Scholar]
  64. Santos AR dos, Falcão CAB, Muzitano MF, Kaiser CR, Rossi-Bergmann B, Férézou J-P. 2009. Ivermectin-derived leishmanicidal compounds. Bioorganic & Medicinal Chemistry, 17, 496–502. [Google Scholar]
  65. Serafim TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valenzuela JG. 2018. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nature Microbiology, 3, 548–555. [Google Scholar]
  66. Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X, Fonseca SB, Sun H, Wood TE, Ward R. 2010. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood, 116, 3593–3603. [Google Scholar]
  67. Shen Q, Rappleye CA. 2020. Living within the macrophage: dimorphic fungal pathogen intracellular metabolism. Frontiers in Cellular and Infection Microbiology, 10, 592259. [Google Scholar]
  68. Steverding D. 2017. The history of leishmaniasis. Parasites & Vectors, 10, 82. [Google Scholar]
  69. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102, 15545–15550. [Google Scholar]
  70. Sundar S, Chakravarty J. 2015. An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy, 16, 237–252. [Google Scholar]
  71. Teixeira M, Santos R de J, Sampaio R, Pontes-de-Carvalho L, Santos WL dos. 2002. A simple and reproducible method to obtain large numbers of axenic amastigotes of different Leishmania species. Parasitology Research, 88, 963–968. [Google Scholar]
  72. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7, 562–578. [Google Scholar]
  73. Trevijano-Contador N, Zaragoza O. 2018. Immune response of Galleria mellonella against human fungal pathogens. Journal of Fungi, 5, 3. [Google Scholar]
  74. Verkman AS, Galietta LJ. 2009. Chloride channels as drug targets, Nature Reviews Drug Discovery, 8, 153–171. [Google Scholar]
  75. WHO. 2024. Leishmaniasis, Available at https://www.who.int/health-topics/leishmaniasis#tab=tab_1 (accessed 2024). [Google Scholar]
  76. Zghair KH. 2017. In vitro assessment of miltefosine activity against promastigotes and axenic amastigotes of Leishmania tropica . Iraqi Journal of Science, 58, 22–30. [Google Scholar]
  77. Zhang J, Li J, Hu K, Zhou Q, Chen X, He J, Yin S, Chi Y, Liao X, Xiao Y. 2022. Screening novel vaccine candidates for Leishmania donovani by combining differential proteomics and immunoinformatics analysis. Frontiers in Immunology, 13, 902066. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.