Open Access
Issue
Parasite
Volume 28, 2021
Article Number 74
Number of page(s) 11
DOI https://doi.org/10.1051/parasite/2021073
Published online 01 November 2021
  1. Afonso E, Lemoine M, Poulle M-L, Ravat M-C, Romand S, Thulliez P, Villena I, Aubert D, Rabilloud M, Riche B, Gilot-Fromont E. 2008. Spatial distribution of soil contamination by Toxoplasma gondii in relation to cat defecation behaviour in an urban area. International Journal for Parasitology, 38, 1017–1023. [CrossRef] [PubMed] [Google Scholar]
  2. Amoah ID, Singh G, Stenström TA, Reddy P. 2017. Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-of-the-art and future perspectives. Acta Tropica, 169, 187–201. [CrossRef] [PubMed] [Google Scholar]
  3. Barja I. 2009. Decision making in plant selection during the faecal-marking behaviour of wild wolves. Animal Behaviour, 77, 489–493. [CrossRef] [Google Scholar]
  4. Bastien M, Vaniscotte A, Combes B, Umhang G, Germain E, Gouley V, Pierlet A, Quintaine T, Forin-Wiart MA, Villena I, Aubert D, Boue F, Poulle M-L. 2018. High density of fox and cat faeces in kitchen gardens and resulting rodent exposure to Echinococcus multilocularis and Toxoplasma gondii. Folia Parasitologica, 65, 002. [CrossRef] [Google Scholar]
  5. Bastien M, Vaniscotte A, Combes B, Umhang G, Raton V, Germain E, Villena I, Aubert D, Boué F, Poulle M-L. 2019. Identifying drivers of fox and cat faecal deposits in kitchen gardens in order to evaluate measures for reducing contamination of fresh fruit and vegetables. Food and Waterborne Parasitology, 14, e00034. [CrossRef] [PubMed] [Google Scholar]
  6. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology, 12, 2385–2397. [CrossRef] [PubMed] [Google Scholar]
  7. Blaszkowska J, Kurnatowski P, Damiecka P. 2011. Contamination of the soil by eggs of geohelminths in rural areas of Lodz district (Poland). Helminthologia, 48, 67–76. [CrossRef] [Google Scholar]
  8. Borcard D, Gillet F, Legendre P. 2011. Numerical ecology with R. New York, NY: Springer, New York. [CrossRef] [Google Scholar]
  9. Bouwknegt M, Devleesschauwer B, Graham H, Robertson LJ, van der Giessen JW, the Euro-FBP workshop participants. 2018. Prioritisation of food-borne parasites in Europe, 2016. Euro Surveillance, 23, 9, pii=17-00161. [Google Scholar]
  10. Bradley CA, Altizer S. 2006. Urbanization and the ecology of wildlife diseases. Trends in Ecology & Evolution, 22, 95–102. [Google Scholar]
  11. Chalmers RM, Robertson LJ, Dorny P, Jordan S, Kärssin A, Katzer F, La Carbona S, Lalle M, Lassen B, Mladineo I, Rozycki M, Bilska-Zajac E, Schares G, Mayer-Scholl A, Trevisan C, Tysnes K, Vasilev S, Klotz C. 2020. Parasite detection in food: Current status and future needs for validation. Trends in Food Science & Technology, 99, 337–350. [CrossRef] [Google Scholar]
  12. Collender PA, Kirby AE, Addiss DG, Freeman MC, Remais JV. 2015. Methods for quantification of soil-transmitted helminths in environmental media: Current techniques and recent advances. Trends in Parasitology, 31, 625–639. [CrossRef] [PubMed] [Google Scholar]
  13. Combes B, Comte S, Raton V, Raoul F, Boué F, Umhang G, Favier S, Dunoyer C, Woronoff N, Giraudoux P. 2012. Westward Spread of Echinococcus multilocularis in Foxes, France, 2005–2010. Emerging Infectious Diseases, 18, 2059–2062. [CrossRef] [PubMed] [Google Scholar]
  14. Conraths FJ, Deplazes P. 2015. Echinococcus multilocularis: Epidemiology, surveillance and state-of-the-art diagnostics from a veterinary public health perspective. Veterinary Parasitology, 213, 149–161. [CrossRef] [PubMed] [Google Scholar]
  15. Da Silva AM, Courquet S, Raoul F, Rieffel D, Giraudoux P, Millon L, Knapp J. 2020. Assessment of the exposure to Echinococcus multilocularis associated with carnivore faeces using real-time quantitative PCR and flotation technique assays. International Journal for Parasitology, 50, 1195–1204. [CrossRef] [PubMed] [Google Scholar]
  16. Deplazes P, Hegglin D, Gloor S, Romig T. 2004. Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends in Parasitology, 20, 77–84. [CrossRef] [PubMed] [Google Scholar]
  17. EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. 2018. Public health risks associated with food-borne parasites. EFSA Journal, 16, 5495. [Google Scholar]
  18. Eisen AKA, Demoliner M, de Oliveira KG, Troian EA, Mallmann L, Filippi M, de Almeida PR, Spilki FR, Eisen AKA, Demoliner M, de Oliveira KG, Troian EA, Mallmann L, Filippi M, de Almeida PR, Spilki FR. 2019. Soil contamination of a public park by human and canine mastadenovirus, as well as hookworms and Toxocara spp eggs. Revista do Instituto de Medicina Tropical de São Paulo, 61, e60. [CrossRef] [Google Scholar]
  19. Espírito-Santo C, Rosalino LM, Santos-Reis M. 2007. Factors affecting the placement of common genet latrine sites in a Mediterranean landscape in Portugal. Journal of Mammalogy, 88, 201–207. [CrossRef] [Google Scholar]
  20. Fischer C, Reperant LA, Weber JM, Hegglin D, Deplazes P. 2005. Echinococcus multilocularis infections of rural, residential and urban foxes (Vulpes vulpes) in the canton of Geneva, Switzerland. Parasite, 12, 339–346. [EDP Sciences] [PubMed] [Google Scholar]
  21. Forin-Wiart M-A, Gotteland C, Gilot-Fromont E, Poulle M-L. 2014. Assessing the homogeneity of individual scat detection probability using the bait-marking method on a monitored free-ranging carnivore population. European Journal of Wildlife Research, 60, 665–672. [CrossRef] [Google Scholar]
  22. Gecchele LV, Pedersen AB, Bell M. 2020. Fine-scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecology and Evolution, 10, 13796–13809. [CrossRef] [PubMed] [Google Scholar]
  23. Gras P, Knuth S, Börner K, Marescot L, Benhaiem S, Aue A, Wittstatt U, Kleinschmit B, Kramer-Schadt S. 2018. Landscape structures affect risk of canine distemper in urban wildlife. Frontiers in Ecology and Evolution, 6, 136. [CrossRef] [Google Scholar]
  24. Guggisberg AR, Alvarez Rojas CA, Kronenberg PA, Miranda N, Deplazes P. 2020. A sensitive, one-way sequential sieving method to isolate helminths’ eggs and protozoal oocysts from lettuce for genetic identification. Pathogens, 9, 624. [CrossRef] [Google Scholar]
  25. Hegglin D, Deplazes P. 2013. Control of Echinococcus multilocularis: Strategies, feasibility and cost–benefit analyses. International Journal for Parasitology, 43, 327–337. [CrossRef] [PubMed] [Google Scholar]
  26. Kapel CMO, Torgerson PR, Thompson RCA, Deplazes P. 2006. Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. International Journal for Parasitology, 36, 79–86. [CrossRef] [PubMed] [Google Scholar]
  27. Kłapeć T, Borecka A. 2012. Contamination of vegetables, fruits and soil with geohelmints eggs on organic farms in Poland. Annals of Agricultural and Environmental Medicine, 19, 6. [Google Scholar]
  28. Knapp J, Millon L, Mouzon L, Umhang G, Raoul F, Ali ZS, Combes B, Comte S, Gbaguidi-Haore H, Grenouillet F, Giraudoux P. 2014. Real time PCR to detect the environmental faecal contamination by Echinococcus multilocularis from red fox stools. Veterinary Parasitology, 201, 40–47. [CrossRef] [PubMed] [Google Scholar]
  29. Knapp J, Combes B, Umhang G, Aknouche S, Millon L. 2016. Could the domestic cat play a significant role in the transmission of Echinococcus multilocularis? A study based on qPCR analysis of cat feces in a rural area in France. Parasite, 23, 42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Knapp J, Umhang G, Poulle M-L, Millon L. 2016. Development of a real-time PCR for a sensitive one-step coprodiagnosis allowing both the identification of carnivore feces and the detection of Toxocara spp. and Echinococcus multilocularis. Applied and Environmental Microbiology, 82, 2950–2958. [CrossRef] [PubMed] [Google Scholar]
  31. Knapp J, Giraudoux P, Combes B, Umhang G, Boué F, Said-Ali Z, Aknouche S, Garcia C, Vacheyrou M, Laboissière A, Raton V, Comte S, Favier S, Demerson J-M, Caillot C, Millon L, Raoul F. 2018. Rural and urban distribution of wild and domestic carnivore stools in the context of Echinococcus multilocularis environmental exposure. International Journal for Parasitology, 48, 937–946. [CrossRef] [PubMed] [Google Scholar]
  32. Lass A, Szostakowska B, Myjak P, Korzeniewski K. 2015. The first detection of Echinococcus multilocularis DNA in environmental fruit, vegetable, and mushroom samples using nested PCR. Parasitology Research, 114, 4023–4029. [CrossRef] [PubMed] [Google Scholar]
  33. Liccioli S, Kutz SJ, Ruckstuhl KE, Massolo A. 2014. Spatial heterogeneity and temporal variations in Echinococcus multilocularis infections in wild hosts in a North American urban setting. International Journal for Parasitology, 44, 457–465. [CrossRef] [PubMed] [Google Scholar]
  34. Liccioli S, Giraudoux P, Deplazes P, Massolo A. 2015. Wilderness in the “city” revisited: Different urbes shape transmission of Echinococcus multilocularis by altering predator and prey communities. Trends in Parasitology, 31, 297–305. [CrossRef] [PubMed] [Google Scholar]
  35. Mandarino-Pereira A, de Souza FS, Lopes CWG, Pereira MJS. 2010. Prevalence of parasites in soil and dog feces according to diagnostic tests. Veterinary Parasitology, 170, 176–181. [CrossRef] [PubMed] [Google Scholar]
  36. Nonaka N, Sano T, Inoue T, Teresa Armua M, Fukui D, Katakura K, Oku Y. 2009. Multiplex PCR system for identifying the carnivore origins of faeces for an epidemiological study on Echinococcus multilocularis in Hokkaido, Japan. Parasitology Research, 106, 75–83. [CrossRef] [PubMed] [Google Scholar]
  37. Otero D, Alho AM, Nijsse R, Roelfsema J, Overgaauw P, Madeira de Carvalho L. 2018. Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal. Journal of Infection and Public Health, 11, 94–98. [CrossRef] [PubMed] [Google Scholar]
  38. Otranto D, Deplazes P. 2019. Zoonotic nematodes of wild carnivores. International Journal for Parasitology: Parasites and Wildlife, 9, 370–383. [CrossRef] [Google Scholar]
  39. Overgaauw PAM. 1996. Effect of a government educational campaign in the Netherlands on awareness of Toxocara and toxocarosis. Preventive Veterinary Medicine, 28, 165–174. [CrossRef] [Google Scholar]
  40. Petavy AF, Tenora F, Deblock S, Sergent V. 2000. Echinococcus multilocularis in domestic cats in France. A potential risk factor for alveolar hydatid disease contamination in humans. Veterinary Parasitology, 87, 151–156. [CrossRef] [PubMed] [Google Scholar]
  41. Piarroux M, Piarroux R, Knapp J, Bardonnet K, Dumortier J, Watelet J, Gerard A, Beytout J, Abergel A, Bresson-Hadni S, Gaudart J. 2013. Populations at risk for alveolar echinococcosis, France. Emerging Infectious Diseases, 19, 721–728. [CrossRef] [PubMed] [Google Scholar]
  42. Piarroux M, Gaudart J, Bresson-Hadni S, Bardonnet K, Faucher B, Grenouillet F, Knapp J, Dumortier J, Watelet J, Gerard A, Beytout J, Abergel A, Wallon M, Vuitton DA, Piarroux R, Network collective the F. 2015. Landscape and climatic characteristics associated with human alveolar echinococcosis in France, 1982 to 2007. Euro Surveillance, 20, 18, pii: 21118. [Google Scholar]
  43. Poulle M-L, Bastien M, Richard Y, Josse-Dupuis É, Aubert D, Villena I, Knapp J. 2017. Detection of Echinococcus multilocularis and other foodborne parasites in fox, cat and dog faeces collected in kitchen gardens in a highly endemic area for alveolar echinococcosis. Parasite, 24, 29. [EDP Sciences] [PubMed] [Google Scholar]
  44. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. 2014. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & Vectors, 7, 37. [CrossRef] [PubMed] [Google Scholar]
  45. R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  46. Raoul F, Deplazes P, Nonaka N, Piarroux R, Vuitton D, Giraudoux P. 2001. Assessment of the epidemiological status of Echinococcus multilocularis in foxes in France using ELISA coprotests on fox faeces collected in the field. International Journal for Parasitology, 31, 1579–1588. [CrossRef] [PubMed] [Google Scholar]
  47. Raoul F, Hegglin D, Giraudoux P. 2015. Trophic ecology, behaviour and host population dynamics in Echinococcus multilocularis transmission. Veterinary Parasitology, 213, 162–171. [CrossRef] [PubMed] [Google Scholar]
  48. Ristić M, Miladinović-Tasić N, Dimitrijević S, Nenadović K, Bogunović D, Stepanović P, Ilić T. 2020. Soil and sand contamination with canine intestinal parasite eggs as a risk factor for human health in public parks in Niš (Serbia). Helminthologia, 57, 109–119. [CrossRef] [PubMed] [Google Scholar]
  49. Robardet E, Giraudoux P, Caillot C, Boue F, Cliquet F, Augot D, Barrat J. 2008. Infection of foxes by Echinococcocus multilocularis in urban and suburban areas of Nancy, France: Influence of feeding habits and environment. Parasite, 15, 77–85. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Robardet E, Giraudoux P, Caillot C, Augot D, Boue F, Barrat J. 2011. Fox defecation behaviour in relation to spatial distribution of voles in an urbanised area: An increasing risk of transmission of Echinococcus multilocularis? International Journal for Parasitology, 41, 145–154. [CrossRef] [PubMed] [Google Scholar]
  51. Robertson LJ, Gjerde B. 2001. Occurrence of parasites on fruits and vegetables in Norway. Journal of Food Protection, 64, 1793–1798. [CrossRef] [PubMed] [Google Scholar]
  52. Robertson LJ, van der Giessen JWB, Batz MB, Kojima M, Cahill S. 2013. Have foodborne parasites finally become a global concern? Trends in Parasitology, 29, 101–103. [CrossRef] [PubMed] [Google Scholar]
  53. Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. 2018. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: A review of methods. Parasite, 25, 14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Sanchez DM, Krausman PR, Livingston TR, Gipson PS. 2004. Persistence of carnivore scat in the Sonoran Desert. Wildlife Society Bulletin, 32, 366–372. [CrossRef] [Google Scholar]
  55. Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. 2019. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food and Waterborne Parasitology, 15, e00049. [CrossRef] [PubMed] [Google Scholar]
  56. Simon JA, Kurdzielewicz S, Jeanniot E, Dupuis E, Marnef F, Aubert D, Villena I, Poulle M-L. 2017. Spatial distribution of soil contaminated with Toxoplasma gondii oocysts in relation to the distribution and use of domestic cat defecation sites on dairy farms. International Journal for Parasitology, 47, 357–367. [CrossRef] [PubMed] [Google Scholar]
  57. Simonato G, Cassini R, Morelli S, Di Cesare A, La Torre F, Marcer F, Traversa D, Pietrobelli M, Frangipane di Regalbono A. 2019. Contamination of Italian parks with canine helminth eggs and health risk perception of the public. Preventive Veterinary Medicine, 172, 104788. [CrossRef] [PubMed] [Google Scholar]
  58. Soulsbury CD, Baker PJ, Iossa G, Harris S. 2008. Fitness costs of dispersal in red foxes (Vulpes vulpes). Behavioral Ecology and Sociobiology, 62, 1289–1298. [CrossRef] [Google Scholar]
  59. Szostakowska B, Lass A, Kostyra K, Pietkiewicz H, Myjak P. 2014. First finding of Echinococcus multilocularis DNA in soil: Preliminary survey in Varmia-Masuria Province, northeast Poland. Veterinary Parasitology, 203, 73–79. [CrossRef] [PubMed] [Google Scholar]
  60. Tackmann K, Löschner U, Mix H, Staubach C, Thulke HH, Ziller M, Conraths FJ. 2001. A field study to control Echinococcus multilocularis-infections of the red fox (Vulpes vulpes) in an endemic focus. Epidemiology and Infection, 127, 577–587. [CrossRef] [PubMed] [Google Scholar]
  61. Thevenet PS, Jensen O, Drut R, Cerrone GE, Grenóvero MS, Alvarez HM, Targovnik HM, Basualdo JA. 2005. Viability and infectiousness of eggs of Echinococcus granulosus aged under natural conditions of inferior arid climate. Veterinary Parasitology, 133, 71–77. [CrossRef] [PubMed] [Google Scholar]
  62. Thevenet PS, Alvarez HM, Torrecillas C, Jensen O, Basualdo JA. 2020. Dispersion of Echinococcus granulosus eggs from infected dogs under natural conditions in Patagonia, Argentina. Journal of Helminthology, 94, e29, 1–7. [CrossRef] [Google Scholar]
  63. Thompson RCA, Kapel CMO, Hobbs RP, Deplazes P. 2006. Comparative development of Echinococcus multilocularis in its definitive hosts. Parasitology, 132, 709–716. [PubMed] [Google Scholar]
  64. Torgerson PR, Schweiger A, Deplazes P, Pohar M, Reichen J, Ammann RW, Tarr PE, Halkik N, Müllhaupt B. 2008. Alveolar echinococcosis: from a deadly disease to a well-controlled infection. Relative survival and economic analysis in Switzerland over the last 35 years. Journal of Hepatology, 49, 72–77. [CrossRef] [PubMed] [Google Scholar]
  65. Traversa D. 2012. Pet roundworms and hookworms: A continuing need for global worming. Parasites & Vectors, 5, 91. [CrossRef] [PubMed] [Google Scholar]
  66. Traversa D, Frangipane di Regalbono A, Di Cesare A, La Torre F, Drake J, Pietrobelli M. 2014. Environmental contamination by canine geohelminths. Parasites & Vectors, 7, 67. [CrossRef] [PubMed] [Google Scholar]
  67. Umhang G, Forin-Wiart M-A, Hormaz V, Caillot C, Boucher J-M, Poulle M-L, Boué F. 2015. Echinococcus multilocularis detection in the intestines and feces of free-ranging domestic cats (Felis s. catus) and European wildcats (Felis s. silvestris) from northeastern France. Veterinary Parasitology, 214, 75–79. [CrossRef] [PubMed] [Google Scholar]
  68. Umhang G, Bastien M, Renault C, Faisse M, Caillot C, Boucher J-M, Hormaz V, Poulle M-L, Boué F. 2017. A flotation/sieving method to detect Echinococcus multilocularis and Toxocara spp. eggs in soil by real-time PCR. Parasite, 24, 28. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  69. Utaaker KS, Skjerve E, Robertson LJ. 2017. Keeping it cool: Survival of Giardia cysts and Cryptosporidium oocysts on lettuce leaves. International Journal of Food Microbiology, 255, 51–57. [CrossRef] [PubMed] [Google Scholar]
  70. Vaniscotte A, Raoul F, Poulle ML, Romig T, Dinkel A, Takahashi K, Guislain MH, Moss J, Tiaoying L, Wang Q, Qiu J, Craig PS, Giraudoux P. 2011. Role of dog behaviour and environmental fecal contamination in transmission of Echinococcus multilocularis in Tibetan communities. Parasitology, 138, 1316–1329. [CrossRef] [PubMed] [Google Scholar]
  71. Veit P, Bilger B, Schad V, Schäfer J, Frank W, Lucius R. 1995. Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology, 110(Pt 1), 79–86. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.