Open Access
Issue
Parasite
Volume 32, 2025
Article Number 50
Number of page(s) 13
DOI https://doi.org/10.1051/parasite/2025043
Published online 05 August 2025
  1. Anderson RC. 2000. Nematode parasites of vertebrates: their development and transmission, 2nd edn. Wallingford: CAB International. [Google Scholar]
  2. Atkinson CT, van Riper III C. 1991. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus, in Bird-Parasite Interactions: Ecology, Evolution, and Behaviour, Loye JE, Zuk M, Editors, Oxford University Press: New York. p. 19–48. [Google Scholar]
  3. Beckstead R. 2020. Miscellaneous and sporadic protozoal infections, in Diseases of Poultry, 14th edn, Swayne DE, Editor, John Wiley & Sons: New Jersey. p. 1231–1254. [Google Scholar]
  4. Bensch S, Hellgren O, Pérez-Tris J. 2009. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, 9, 1353–1358. [CrossRef] [PubMed] [Google Scholar]
  5. Boonchuay K, Thomrongsuwannakij T, Chagas CRF, Pornpanom P. 2023. Prevalence and diversity of blood parasites (Plasmodium, Leucocytozoon and Trypanosoma) in backyard chickens (Gallus gallus domesticus) raised in Southern Thailand. Animals, 13, 2798. [Google Scholar]
  6. Cadena-Ortiz H, Mantilla JS, de Aguilar JR, Flores D, Bahamonde D, Matta NE, Bonaccorso E. 2019. Avian haemosporidian infections in rufous-collared sparrows in an Andean dry forest: diversity and factors related to prevalence and parasitaemia. Parasitology, 146, 765–773. [Google Scholar]
  7. Campbell JG. 1954. Bangkok haemorrhagic disease of chickens: An unusual condition associated with an organism of uncertain taxonomy. Journal of Pathology and Bacteriology, 68, 423–429. [Google Scholar]
  8. Chagas CRF, Binkienė R, Valkiūnas G. 2021. Description and molecular characterization of two species of avian blood parasites, with remarks on circadian rhythms of avian haematozoa infections. Animals, 11, 3490. [Google Scholar]
  9. Chagas CRF, Duc M, Gutiérrez-Liberato GA, Valkiūnas G. 2023. Host cells of Leucocytozoon (Haemosporida, Leucocytozoidae) gametocytes, with remarks on the phylogenetic importance of this character. Pathogens, 12, 712. [CrossRef] [PubMed] [Google Scholar]
  10. Chatan W, Khemthong K, Akkharaphichet K, Suwarach P, Seerintra T, Piratae S. 2024. Molecular survey and genetic diversity of Plasmodium sp. infesting domestic poultry in Northeastern Thailand. Journal of Veterinary Research, 68, 101–108. [Google Scholar]
  11. Chiang Y-H, Lin Y-C, Wang S-Y, Lee YP, Chen C-F. 2022. Effects of Artemisia annua on experimentally induced leucocytozoonosis in chickens. Poultry Science, 101, 101690. [Google Scholar]
  12. Duc M, Himmel T, Ilgūnas M, Eigirdas V, Weissenböck H, Valkiūnas G. 2023. Exo-erythrocytic development of two Haemoproteus species (Haemosporida, Haemoproteidae), with description of Haemoproteus dumbbellus, a new blood parasite of bunting birds (Emberizidae). International Journal for Parasitology, 53, 531–543. [CrossRef] [PubMed] [Google Scholar]
  13. Gimba F, Zakaria A, Mugok LB, Siong HC, Jaafar N, Mokhtar MA, Rahman ARA, Amzah A, Abu J, Sani RA, Babjee SM, Sharma RS. 2014. Haemoparasites of domestic poultry and wild birds in Selangor, Malaysia. Malaysian Journal of Veterinary Research, 5, 43–51. [Google Scholar]
  14. Groff TC, Lorenz TJ, Iezhova TA, Valkiūnas G, Sehgal RNM. 2022. Description and molecular characterization of novel Leucocytozoon parasite (Apicomplexa: Haemosporida: Leucocytozoidae), Leucocytozoon polynuclearis n.sp. found in North American woodpeckers. Systematic Parasitology, 99, 103–114. [CrossRef] [PubMed] [Google Scholar]
  15. Gutiérrez-Liberato GA, Duc M, Eigirdas V, Chagas CRF. 2025. Leucocytozoon infections in tits (Aves, Paridae): blood and tissue stages investigated using an integrative approach. Parasite, 32, 13. [Google Scholar]
  16. Haas M, Baruš V, Benedikt V, Literák I. 2011. Microfilariae in birds in the Czech Republic, including a note on adult nematodes Eufilaria delicata in a song thrush Turdus philomelos. Parasitology Research, 109, 645–655. [Google Scholar]
  17. Hagihara M, Yamaguchi T, Kitahara M, Hirai K, Murata K. 2004.Leucocytozoon lovati infections in Wild Rock Ptarmigan (Lagopus mutus) in Japan. Journal of Wildlife Diseases, 40, 804–807. [Google Scholar]
  18. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. [Google Scholar]
  19. Harl J, Himmel T, Valkiūnas G, Ilgūnas M, Nedorost N, Matt J, Kübber-Heiss A, Alic A, Konicek C, Weissenböck H. 2022. Avian haemosporidian parasites of accipitriform raptors. Malaria Journal, 21, 14. [CrossRef] [PubMed] [Google Scholar]
  20. Hellgren O, Waldenström J, Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avain blood. Journal of Pasasitology, 90, 797–802. [Google Scholar]
  21. Huang X, Dong L, Zhang C, Zhang Y. 2015. Genetic diversity, temporal dynamics, and host specificity in blood parasites of passerines in north China. Parasitology Research, 114, 4513–4520. [Google Scholar]
  22. Hyde JE. 2005. Exploring the folate pathway in Plasmodium falciparum. Acta Tropica, 94, 191–206. [Google Scholar]
  23. Inumaru M, Murata K, Sato Y. 2017. Prevalence of avian haemosporidia among injured wild birds in Tokyo and environs, Japan. International Journal for Parasitology: Parasites and Wildlife, 6, 299–309. [Google Scholar]
  24. Ivanova K, Zehtindjiev P, Mariaux J, Georgiev BB. 2015. Genetic diversity of avian haemosporidians in Malaysia: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor. Infection, Genetics and Evolution, 31, 33–39. [Google Scholar]
  25. Khumpim P, Chawengkirttikul R, Junsiri W, Watthanadirek A, Poolsawat N, Minsakorn S, Srionrod N, Anuracpreeda P. 2021. Molecular detection and genetic diversity of Leucocytozoon sabrazesi in chickens in Thailand. Scientific Reports, 11, 16686. [CrossRef] [PubMed] [Google Scholar]
  26. Kitaoka S. 1978. Serological diagnosis of chicken leucocytozoonosis. Japan Agricultural Research Quarterly, 12, 157–160. [Google Scholar]
  27. Lertwatcharasarakul P, Salakij C, Prasopsom P, Kasorndorkbua C, Jakthong P, Santavakul M, Suwanasaeng P, Ploypan R. 2021. Molecular and morphological analyses of Leucocytozoon parasites (Haemosporida: Leucocytozoidae) in raptors from Thailand. Acta Parasitologica, 66, 1406–1416. [Google Scholar]
  28. Morii T, Shiihara T, Lee YC, Manuel MF, Nakamura K, Iijima T, Hoji K. 1981. Seroimmunological and parasitological surveys of Leucocytozoon caulleryi infection in chickens in several Asian countries. International Journal for Parasitology, 11, 187–190. [CrossRef] [PubMed] [Google Scholar]
  29. Nakamura K, Morii T, IIjima T. 1979. Effects of sulfamonomethoxine on parasitemia, serum antigen and antibody production in chickens infected with Leucocytozoon caulleryi. Japanese Journal of Parasitology, 28, 377–383. [Google Scholar]
  30. Nakamura K, Mitarai Y, Tanimura N, Hara H, Ikeda A, Shimada J, Isobe T. 1997. Pathogenesis of reduced egg production and soft-shelled eggs in laying hens associated with Leucocytozoon caulleryi infection. Journal of Parasitology, 83(2), 325. [Google Scholar]
  31. Nakamura K. 2022. Leucocytozoon caulleryi infection in chickens: Etiology, pathology, and diagnosis. Japan Agricultural Research Quarterly, 56, 121–127. [Google Scholar]
  32. Nawata E, Nagata Y, Sasaki A, Iwama K, Sakuratani T. 2005. Mapping of climatic data in Northeast Thailand: Rainfall. Tropics, 14, 191–201. [Google Scholar]
  33. Ortego J, Cordero PJ. 2010. Factors associated with the geographic distribution of leucocytozoa parasitizing nestling eagle owls (Bubo bubo): A local spatial-scale analysis. Conservation Genetics, 11, 1479–1487. [Google Scholar]
  34. Peirce MA. 2016. Infectious diseases, in Avian Medicine, 3rd edn, Samour J, Editor, Elservier: Missouri, p. 434–521. [Google Scholar]
  35. Piratae S, Vaisusuk K, Chatan W. 2021. Prevalence and molecular identification of Leucocytozoon spp. in fighting cocks (Gallus gallus) in Thailand. Parasitology Research, 120, 2149–2155. [CrossRef] [PubMed] [Google Scholar]
  36. Pohuang T, Jittimanee S, Junnu S. 2021. Pathology and molecular characterization of Leucocytozoon caulleryi from backyard chickens in Khon Kaen Province, Thailand. Veterinary World, 14, 2634–2639. [Google Scholar]
  37. Pornpanom P, Chagas CRF, Lertwatcharasarakul P, Kasorndorkbua C, Valkiūnas G, Salakij C. 2019. Molecular prevalence and phylogenetic relationship of Haemoproteus and Plasmodium parasites of owls in Thailand: Data from a rehabilitation centre. International Journal for Parasitology: Parasites and Wildlife, 9, 248–257. [Google Scholar]
  38. Pornpanom P, Salakij C, Prasopsom P, Lertwatcharasarakul P, Kasorndorkbua C. 2019. Morphological and molecular characterization of avian trypanosomes in raptors from Thailand. Parasitology Research, 118, 2419–2429. [Google Scholar]
  39. Pornpanom P, Kasorndorkbua C, Lertwatcharasarakul P, Salakij C. 2021. Prevalence and genetic diversity of Haemoproteus and Plasmodium in raptors from Thailand: Data from rehabilitation center. International Journal for Parasitology: Parasites and Wildlife, 16, 75–82. [Google Scholar]
  40. Pornpanom P, Boonchuay K. 2024. Preliminary study on buffy coat smear and molecular detection of microfilaria in domestic chickens (Gallus gallus domesticus) raised in Southern Thailand. Veterinary World, 17, 888–894. [Google Scholar]
  41. Pornpanom P, Valkiūnas G, Paudel S. 2025. Morphological and molecular characterization of avian trypanosomes in domestic chickens (Gallus gallus domesticus) in Southeast Asia and review of the parasite morphometry in different avian hosts. Avian Pathology, 54, 489–497. [Google Scholar]
  42. Pruck-Ngern M, Pattaradilokrat S, Chumpolbanchorn K, Pimnon S, Harnyuttanakorn P, Buddhirakkul P, Saiwichai T. 2014. Refractoriness of the natural malaria vector Culex quinquefasciatus to Plasmodium gallinaceum. Journal of Tropical Medicine and Parasitology, 37, 60–68. [Google Scholar]
  43. R Core Team. 2024. R: A language and environment for statistical computing. Available from: https://www.R-project.org/. [Google Scholar]
  44. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. [CrossRef] [PubMed] [Google Scholar]
  45. Sacchi L, Prigioni C. 1985. Haematozoa of Italian birds. 1: Redescription of Leucocytozoon macleani Sambon, 1908 (Apicomplexa Haemosporina) from Phasianus colchicus. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 126, 89–93. [Google Scholar]
  46. Sato Y, Hagihara M, Yamaguchi T, Yukawa M, Murata K. 2007. Phylogenetic comparison of Leucocytozoon spp. from wild birds of Japan. Journal of Veterinary Medical Science, 69, 55–59. [CrossRef] [PubMed] [Google Scholar]
  47. Sehgal RNM, Jones HI, Smith TB. 2005. Molecular evidence for host specificity of parasitic nematode microfilariae in some African rainforest birds. Molecular Ecology, 14, 3977–3988. [Google Scholar]
  48. Sehgal RNM, Valkiunas G, Iezhova TA, Smith TB. 2006. Blood parasites of chickens in Uganda and Cameroon with molecular descriptions of Leucocytozoon schoutedeni and Trypanosoma gallinarum. Journal of Parasitology, 92, 1336–1343. [Google Scholar]
  49. Ševčík R, Mahlerová K, Riera FA, Zárybnická M. 2024. Leucocytozoon infection does not influence the survival of Boreal Owl Aegolius funereus nestlings. Avian Diseases, 68, 134–140. [Google Scholar]
  50. Suprihati E, Kusnoto K, Triakoso N, Yuniarti WM. 2020. Histopathological studies on Leucocytozoon caulleryi Infection on broiler in endemic area of Indonesia. Systematic Reviews in Pharmacy, 11, 1219–1223. [Google Scholar]
  51. Svobodová M, Dolnik OV, Čepička I, Rádrová J. 2017. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasites & Vectors, 10, 224. [Google Scholar]
  52. Swangneat K, Srikacha N, Soulinthone N, Paudel S, Srisanyong W, James Stott CJ, Mahawan T, Pornpanom P. 2025. Molecular prevalence of avian haemosporidian parasites in Southeast Asia: Systematic review and meta-analysis. Animals, 15, 636. [Google Scholar]
  53. Takang P, Pikulkaew S, Awaiwanont N, Numee S. 2017. Prevalence and risk factors of blood parasites infection in backyard chickens in Chiang Mai. Chiang Mai Veterinary Journal, 15, 157–167. [Google Scholar]
  54. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027. [CrossRef] [PubMed] [Google Scholar]
  55. Thaijarern J, Tangkawanit U, Wongpakam K, Pramual P. 2019. Molecular detection of Trypanosoma (Kinetoplastida: Trypanosomatidae) in black flies (Diptera: Simuliidae) from Thailand. Acta Tropica, 200, 105196. [Google Scholar]
  56. Thilagavathi K, Selvaraj J, Velusamy R, Prasath NB, Prabu PC, Hariharan J. 2022. Outbreak of leucocytozoonosis in commercial white Leghorn layer chickens. Indian Journal of Veterinary Pathology, 46, 289–294. [Google Scholar]
  57. Valkiūnas G, Iezhova TA, Mironov SV. 2002. Leucocytozoon hamiltoni n.sp. (Haemosporida, Leucocytozoidae) from the Bukharan great tit Parus bokharensis. Journal of Parasitology, 88, 577–581. [Google Scholar]
  58. Valkiūnas G. 2005. Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press. [Google Scholar]
  59. Valkiūnas G, Anwar AM, Atkinson CT, Greiner EC, Paperna I, Peirce MA. 2005. What distinguishes malaria parasites from other pigmented haemosporidians? Trends in Parasitology, 21, 357–358. [Google Scholar]
  60. Valkiūnas G, Iezhova T-A, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S. 2008. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. Journal of Parasitology, 94, 1395–1401. [CrossRef] [PubMed] [Google Scholar]
  61. Valkiūnas G, Sehgal RNM, Iezhova TA, Hull AC. 2020. Identification of Leucocytozoon toddi group (Haemosporida: Leucocytozoidae), with remarks on the species taxonomy of leucocytozoids, Journal of Parasitology, 96, 170–177. [Google Scholar]
  62. Valkiūnas G, Iezhova TA. 2017. Exo-erythrocytic development of avian malaria and related haemosporidian parasites. Malaria Journal, 16, 101. [CrossRef] [PubMed] [Google Scholar]
  63. Valkiūnas G, Iezhova TA. 2018. Keys to the avian malaria parasites. Malaria Journal, 17, 212. [Google Scholar]
  64. Valkiūnas G, Iezhova TA. 2023. Insights into the biology of Leucocytozoon species (Haemosporida, Leucocytozoidae): Why is there slow research progress on agents of leucocytozoonosis? Microorganisms 11, 1251. [CrossRef] [PubMed] [Google Scholar]
  65. Wiegmann A, Springer A, Rinaud T, Ottensmann M, Legler M, Krüger O, Fehr M, Chakarov N, Strube C. 2021. The prevalence of Leucocytozoon spp. in nestlings of three wild raptor species including implications on haematological and blood chemistry values. International Journal for Parasitology: Parasites and Wildlife, 16, 236–243. [Google Scholar]
  66. Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, Murata S, Nonaka N, Nakao R, Katakura K. 2020. Detection and molecular identification of Leucocytozoon and Plasmodium species from village chickens in different areas of Myanmar. Acta Tropica, 212, 105719. [CrossRef] [PubMed] [Google Scholar]
  67. Yun M-K, Wu Y, Li Z, Zhao Y, Waddell MB, Ferreira AM, Lee RE, Bashford D, Stephen W, White SW. 2012. Catalysis and sulfa drug resistance in dihydropteroate synthase. Science, 335, 1110–1114. [Google Scholar]
  68. Zhao W, Pang Q, Xu R, Liu J, Liu S, Li J, Su X. 2016. Monitoring the prevalence of Leucocytozoon sabrazesi in Southern China and testing tricyclic compounds against gametocytes. PLoS One, 11, e0161869. [CrossRef] [PubMed] [Google Scholar]
  69. Zídková L, Cepicka I, Szabová J, Svobodová M. 2012. Biodiversity of avian trypanosomes. Infection, Genetics and Evolution, 12, 102–112. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.