Open Access
Review
Issue
Parasite
Volume 32, 2025
Article Number 7
Number of page(s) 20
DOI https://doi.org/10.1051/parasite/2025001
Published online 04 February 2025
  1. Abaza BE, Hamza RS, Farag TI, Abdel-Hamid MA, Moustafa RA. 2016. Assessing the efficacy of Nitazoxanide in treatment of cryptosporidiosis using PCR examination. Journal of the Egyptian Society of Parasitology, 46, 683–692. [PubMed] [Google Scholar]
  2. Abdulla M-H, Lim K-C, Sajid M, McKerrow JH, Caffrey CR. 2007. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Medicine, 4, e14. [CrossRef] [PubMed] [Google Scholar]
  3. Abdulrahman BA, Khweek AA, Akhter A, Caution K, Kotrange S, Abdelaziz DHA, Newland C, Rosales-Reyes R, Kopp B, McCoy K, Montione R, Schlesinger LS, Gavrilin MA, Wewers MD, Valvano MA, Amer AO. 2011. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy, 7, 1359–1370. [CrossRef] [PubMed] [Google Scholar]
  4. Aboelsoued D, Abo-Aziza FAM, Mahmoud MH, Abdel Megeed KN, Abu El Ezz NMT, Abu-Salem FM. 2019. Anticryptosporidial effect of pomegranate peels water extract in experimentally infected mice with special reference to some biochemical parameters and antioxidant activity. Journal of Parasitic Diseases, 43, 215–228. [CrossRef] [PubMed] [Google Scholar]
  5. Abouel-Nour MF, EL-Shewehy DMM, Hamada SF, Morsy TA. 2015. The efficacy of three medicinal plants: garlic, ginger and mirazid and a chemical drug metronidazole against Cryptosporidium parvum. I-Immunological response. Journal of the Egyptian Society of Parasitology, 45, 559–570. [PubMed] [Google Scholar]
  6. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V. 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science, 304, 441–445. [Google Scholar]
  7. Abubakar I, Aliyu SH, Arumugam C, Hunter PR, Usman NK. 2007. Prevention and treatment of cryptosporidiosis in immunocompromised patients. Cochrane Database of Systematic Reviews, 1, CD004932. https://doi.org/10.1002/14651858.CD004932.pub2. [Google Scholar]
  8. Agarwal S, Singh MK, Garg S, Chitnis CE, Singh S. 2013. Ca2+-mediated exocytosis of subtilisin-like protease 1: a key step in egress of Plasmodium falciparum merozoites. Cellular Microbiology, 15, 910–921. [CrossRef] [PubMed] [Google Scholar]
  9. Ahmadpour E, Safarpour H, Xiao L, Zarean M, Hatam-Nahavandi K, Barac A, Picot S, Rahimi MT, Rubino S, Mahami-Oskouei M, Spotin A, Nami S, Baghi HB. 2020. Cryptosporidiosis in HIV-positive patients and related risk factors: A systematic review and meta-analysis. Parasite, 27, 27. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Akira S, Takeda K, Kaisho T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2, 675–680. [CrossRef] [PubMed] [Google Scholar]
  11. Akuru EA, Chukwuma CI, Oyeagu CE, Erukainure OL, Mashile B, Setlhodi R, Mashele SS, Makhafola TJ, Unuofin JO, Abifarin TO, Mpendulo TC. 2022. Nutritional and phytochemical profile of pomegranate (“Wonderful variety”) peel and its effects on hepatic oxidative stress and metabolic alterations. Journal of Food Biochemistry, 46, e13913. [CrossRef] [PubMed] [Google Scholar]
  12. Allam AF, Shehab AY. 2002. Efficacy of azithromycin, praziquantel and mirazid in treatment of cryptosporidiosis in school children. Journal of the Egyptian Society of Parasitology, 32, 969–978. [PubMed] [Google Scholar]
  13. Allison AC, Eugui EM. 2000. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology, 47, 85–118. [CrossRef] [PubMed] [Google Scholar]
  14. Allison AC, Kowalski WJ, Muller CD, Eugui EM. 1993. Mechanisms of action of mycophenolic acid. Annals of the New York Academy of Sciences, 696, 63–87. [CrossRef] [PubMed] [Google Scholar]
  15. Amadi B, Mwiya M, Musuku J, Watuka A, Sianongo S, Ayoub A, Kelly P. 2002. Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet, 360, 1375–1380. [CrossRef] [PubMed] [Google Scholar]
  16. Andersson CS, Lundgren CAK, Magnúsdóttir A, Ge C, Wieslander A, Martinez Molina D, Högbom M. 2012. The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: structural basis for housing lipid substrates longer than the enzyme. Structure, 20, 1062–1070. [CrossRef] [PubMed] [Google Scholar]
  17. Areeshi MY, Beeching NJ, Hart CA. 2007. Cryptosporidiosis in Saudi Arabia and neighboring countries. Annals of Saudi Medicine, 27, 325–332. [CrossRef] [PubMed] [Google Scholar]
  18. Asadpour M, Namazi F, Razavi SM, Nazifi S. 2018. Comparative efficacy of curcumin and paromomycin against Cryptosporidium parvum infection in a BALB/c model. Veterinary Parasitology, 250, 7–14. [CrossRef] [PubMed] [Google Scholar]
  19. Asadpour M, Namazi F, Razavi SM, Nazifi S. 2018. Curcumin: a promising treatment for Cryptosporidium parvum infection in immunosuppressed BALB/c mice. Experimental Parasitology, 195, 59–65. [CrossRef] [PubMed] [Google Scholar]
  20. Asma I, Sim BLH, Brent RD, Johari S, Yvonne LAL. 2015. Molecular epidemiology of Cryptosporidium in HIV/AIDS patients in Malaysia. Tropical Biomedicine, 32, 310–322. [PubMed] [Google Scholar]
  21. Baishanbo A, Gargala G, Duclos C, François A, Rossignol J-F, Ballet JJ, Favennec L. 2006. Efficacy of nitazoxanide and paromomycin in biliary tract cryptosporidiosis in an immunosuppressed gerbil model. Journal of Antimicrobial Chemotherapy, 57, 353–355. [CrossRef] [PubMed] [Google Scholar]
  22. Baragaña B, Forte B, Choi R, Nakazawa Hewitt S, Bueren-Calabuig JA, Pisco JP, Peet C, Dranow DM, Robinson DA, Jansen C, Norcross NR, Vinayak S, Anderson M, Brooks CF, Cooper CA, Damerow S, Delves M, Dowers K, Duffy J, Edwards TE, Hallyburton I, Horst BG, Hulverson MA, Ferguson L, Jiménez-Díaz MB, Jumani RS, Lorimer DD, Love MS, Maher S, Matthews H, McNamara CW, Miller P, O’Neill S, Ojo KK, Osuna-Cabello M, Pinto E, Post J, Riley J, Rottmann M, Sanz LM, Scullion P, Sharma A, Shepherd SM, Shishikura Y, Simeons FRC, Stebbins EE, Stojanovski L, Straschil U, Tamaki FK, Tamjar J, Torrie LS, Vantaux A, Witkowski B, Wittlin S, Yogavel M, Zuccotto F, Angulo-Barturen I, Sinden R, Baum J, Gamo F-J, Mäser P, Kyle DE, Winzeler EA, Myler PJ, Wyatt PG, Floyd D, Matthews D, Sharma A, Striepen B, Huston CD, Gray DW, Fairlamb AH, Pisliakov AV, Walpole C, Read KD, Van Voorhis WC, Gilbert IH. 2019. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 116, 7015–7020. [CrossRef] [PubMed] [Google Scholar]
  23. Besteiro S. 2017. Autophagy in apicomplexan parasites. Current Opinion in Microbiology, 40, 14–20. [CrossRef] [PubMed] [Google Scholar]
  24. Beutler B, Hoebe K, Du X, Ulevitch RJ. 2003. How we detect microbes and respond to them: the Toll-like receptors and their transducers. Journal of Leukocyte Biology, 74, 479–485. [CrossRef] [PubMed] [Google Scholar]
  25. Blackman MJ, Carruthers VB. 2013. Recent insights into apicomplexan parasite egress provide new views to a kill. Current Opinion in Microbiology, 16, 459–464. [PubMed] [Google Scholar]
  26. Bobak DA. 2006. Use of nitazoxanide for gastrointestinal tract infections: treatment of protozoan parasitic infection and beyond. Current Infectious Disease Reports, 8, 91–95. [CrossRef] [PubMed] [Google Scholar]
  27. Boehmer TK, Alden NB, Ghosh TS, Vogt RL. 2009. Cryptosporidiosis from a community swimming pool: outbreak investigation and follow-up study. Epidemiology and Infection, 137, 1651–1654. [CrossRef] [PubMed] [Google Scholar]
  28. Bouzid M, Kintz E, Hunter PR. 2018. Risk factors for Cryptosporidium infection in low and middle income countries: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 12, e0006553. [CrossRef] [PubMed] [Google Scholar]
  29. Buckner FS, Ranade RM, Gillespie JR, Shibata S, Hulverson MA, Zhang Z, Huang W, Choi R, Verlinde CLMJ, Hol WGJ, Ochida A, Akao Y, Choy RKM, Van Voorhis WC, Arnold SLM, Jumani RS, Huston CD, Fan E. 2019. Optimization of methionyl tRNA-synthetase inhibitors for treatment of Cryptosporidium Infection. Antimicrobial Agents and Chemotherapy, 63, e02061–18. [CrossRef] [PubMed] [Google Scholar]
  30. Caamaño J, Hunter CA. 2002. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clinical Microbiology Reviews, 15, 414–429. [CrossRef] [PubMed] [Google Scholar]
  31. Caputo C, Forbes A, Frost F, Sinclair MI, Kunde TR, Hoy JF, Fairley CK. 1999. Determinants of antibodies to Cryptosporidium infection among gay and bisexual men with HIV infection. Epidemiology and Infection, 122, 291–297. [CrossRef] [PubMed] [Google Scholar]
  32. Castellanos-Gonzalez A, Martinez-Traverso G, Fishbeck K, Nava S, White AC. 2019. Systematic gene silencing identified Cryptosporidium nucleoside diphosphate kinase and other molecules as targets for suppression of parasite proliferation in human intestinal cells. Scientific Reports, 9, 12153. [CrossRef] [PubMed] [Google Scholar]
  33. Castellanos-Gonzalez A, Sadiqova A, Ortega-Mendez J, White AC. 2022. RNA-based therapy for Cryptosporidium parvum Infection: proof-of-concept studies. Infection and Immunity, 90, e0019622. [CrossRef] [PubMed] [Google Scholar]
  34. Castellanos-Gonzalez A, Sparks H, Nava S, Huang W, Zhang Z, Rivas K, Hulverson MA, Barrett LK, Ojo KK, Fan E, Van Voorhis WC, White AC. 2016. A novel calcium-dependent kinase inhibitor, bumped kinase inhibitor 1517, cures cryptosporidiosis in immunosuppressed mice. Journal of Infectious Diseases, 214, 1850–1855. [CrossRef] [PubMed] [Google Scholar]
  35. Castellanos-Gonzalez A, White AC, Ojo KK, Vidadala RSR, Zhang Z, Reid MC, Fox AMW, Keyloun KR, Rivas K, Irani A, Dann SM, Fan E, Maly DJ, Van Voorhis WC. 2013. A novel calcium-dependent protein kinase inhibitor as a lead compound for treating cryptosporidiosis. Journal of Infectious Diseases, 208, 1342–1348. [CrossRef] [PubMed] [Google Scholar]
  36. Centers for Disease Control, Prevention (CDC). 2006. Epidemiology of HIV/AIDS–United States, 1981–2005. MMWR. Morbidity and Mortality Weekly Report, 55, 589–592. [PubMed] [Google Scholar]
  37. Chadha A, Chadee K. 2021. The NF-κB pathway: Modulation by Entamoeba histolytica and other protozoan parasites. Frontiers in Cellular and Infection Microbiology, 11, 748404. [CrossRef] [PubMed] [Google Scholar]
  38. Chalmers RM. 2012. Waterborne outbreaks of cryptosporidiosis. Annali dell’ Istituto Superiore di Sanità, 48, 429–446. [CrossRef] [PubMed] [Google Scholar]
  39. Chattopadhyay S, Mahapatra RK. 2019. Identification of adaptive inhibitors of Cryptosporidium parvum fatty acyl-coenzyme A synthetase isoforms by virtual screening. Parasitology Research, 118, 3159–3171. [CrossRef] [PubMed] [Google Scholar]
  40. Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen X-M, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Striepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. 2015. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infectious Diseases, 15, 85–94. [CrossRef] [Google Scholar]
  41. Chen XM, Levine SA, Splinter PL, Tietz PS, Ganong AL, Jobin C, Gores GJ, Paya CV, LaRusso NF. 2001. Cryptosporidium parvum activates nuclear factor kappaB in biliary epithelia preventing epithelial cell apoptosis. Gastroenterology, 120, 1774–1783. [CrossRef] [PubMed] [Google Scholar]
  42. Chen X-M, O’Hara SP, Nelson JB, Splinter PL, Small AJ, Tietz PS, Limper AH, LaRusso NF. 2005. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. Journal of Immunology, 175, 7447–7456. [CrossRef] [PubMed] [Google Scholar]
  43. Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. 2012. Clofazimine: current status and future prospects. Journal of Antimicrobial Chemotherapy, 67, 290–298. [CrossRef] [PubMed] [Google Scholar]
  44. Choudhry N, Korbel DS, Edwards LA, Bajaj-Elliott M, McDonald V. 2009. Dysregulation of interferon-gamma-mediated signalling pathway in intestinal epithelial cells by Cryptosporidium parvum infection. Cellular Microbiology, 11, 1354–1364. [CrossRef] [PubMed] [Google Scholar]
  45. Cook WJ, Senkovich O, Hernandez A, Speed H, Chattopadhyay D. 2015. Biochemical and structural characterization of Cryptosporidium parvum lactate dehydrogenase. International Journal of Biological Macromolecules, 74, 608–619. [CrossRef] [PubMed] [Google Scholar]
  46. Coronado-Reyes JA, Tinoco-Salazar J, Guisa-Morales LM, Cortés-Penagos CDJ, González-Hernández JC. 2023. Obtaining polyphenolic extracts from pomegranate peel (Punica granatum) to evaluate the bactericide and antioxidant activity. Anais da Academia Brasileira de Ciencias, 95, e20200153. [CrossRef] [PubMed] [Google Scholar]
  47. Delafosse A, Chartier C, Dupuy MC, Dumoulin M, Pors I, Paraud C. 2015. Cryptosporidium parvum infection and associated risk factors in dairy calves in western France. Preventive Veterinary Medicine, 118, 406–412. [CrossRef] [PubMed] [Google Scholar]
  48. Derbyshire ER, Mazitschek R, Clardy J. 2012. Characterization of Plasmodium liver stage inhibition by halofuginone. ChemMedChem, 7, 844–849. [CrossRef] [PubMed] [Google Scholar]
  49. Desai AN. 2020. Cryptosporidiosis. Journal of the American Medical Association, 323, 288. [CrossRef] [PubMed] [Google Scholar]
  50. Díaz P, Varcasia A, Pipia AP, Tamponi C, Sanna G, Prieto A, Ruiu A, Spissu P, Díez-Baños P, Morrondo P, Scala A. 2018. Molecular characterisation and risk factor analysis of Cryptosporidium spp. in calves from Italy. Parasitology Research, 117, 3081–3090. [CrossRef] [PubMed] [Google Scholar]
  51. Dong S, Yang Y, Wang Y, Yang D, Yang Y, Shi Y, Li C, Li L, Chen Y, Jiang Q, Zhou Y. 2020. Prevalence of Cryptosporidium Infection in the global population: A systematic review and meta-analysis. Acta Parasitologica, 65, 882–889. [CrossRef] [PubMed] [Google Scholar]
  52. Doumbo O, Rossignol JF, Pichard E, Traore HA, Dembele TM, Diakite M, Traore F, Diallo DA. 1997. Nitazoxanide in the treatment of cryptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. American Journal of Tropical Medicine and Hygiene, 56, 637–639. [CrossRef] [PubMed] [Google Scholar]
  53. El-Ashkar AM, Mahmoud S, Sabry H, Guirguis N, El Komi W, Ali E, Abu Shousha T, Abdelmksoud HF. 2022. Nitazoxanide, ivermectin, and artemether effects against cryptosporidiosis in diabetic mice: parasitological, histopathological, and chemical studies. Journal of Parasitic Diseases, 46, 1070–1079. [CrossRef] [PubMed] [Google Scholar]
  54. Elbahaie ES, El Gamal RL, Fathy GM, Al-Ghandour AMF, El-Akabawy N, Abd El Hameed BH, Yahia SH. 2023. The controverted therapeutic efficacy of Allium sativum and Artemisia herba-alba extracts on Cryptosporidium-infected mice. Journal of Infection in Developing Countries, 17, 732–743. [CrossRef] [PubMed] [Google Scholar]
  55. El-Saber Batiha G, Magdy Beshbishy A, Wasef GL, Elewa YHA, Al-Sagan AA, Abd El-Hack ME, Taha AE, Abd-Elhakim MY, Prasad Devkota H. 2020. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients, 12, 872. [CrossRef] [PubMed] [Google Scholar]
  56. El-Shewehy DMM, Elshopakey GE, Ismail A, Hassan SS, Ramez AM. 2023. Therapeutic potency of ginger, garlic, and pomegranate extracts against Cryptosporidium parvum-mediated gastro-splenic damage in mice. Acta Parasitologica, 68, 32–41. [CrossRef] [PubMed] [Google Scholar]
  57. El-Wakil ES, Salem AE, Al-Ghandour AMF. 2021. Evaluation of possible prophylactic and therapeutic effect of mefloquine on experimental cryptosporidiosis in immunocompromised mice. Journal of Parasitic Diseases, 45, 380–393. [CrossRef] [PubMed] [Google Scholar]
  58. Esmat M, Abdel-Aal AA, Shalaby MA, Badawi M, Elaskary H, Yousif AB, Fahmy M-EA. 2022. Efficacy of clofazimine and nitazoxanide combination in treating intestinal cryptosporidiosis and enhancing intestinal cellular regeneration in immunocompromised mice. Food and Waterborne Parasitology, 27, e00161. [CrossRef] [PubMed] [Google Scholar]
  59. Farid A, Yousry M, Safwat G. 2022. Garlic (Allium sativum Linnaeus) improved inflammation and reduced cryptosporidiosis burden in immunocompromised mice. Journal of Ethnopharmacology, 292, 115174. [CrossRef] [PubMed] [Google Scholar]
  60. Feng X, Akiyoshi DE, Widmer G, Tzipori S. 2007. Characterization of subtilase protease in Cryptosporidium parvum and C. hominis. Journal of Parasitology, 93, 619–626. [CrossRef] [PubMed] [Google Scholar]
  61. Feng R, Niu Z, Zhang X, Hou W, Zhang Y, Jian F, Ning C, Zhang L, Zhang S, Wang R. 2022. Cryptosporidium parvum downregulates miR-181d in HCT-8 cells via the p50-dependent TLRs/NF-κB pathway. Veterinary Parasitology, 305, 109710. [CrossRef] [PubMed] [Google Scholar]
  62. Feng Y, Ryan UM, Xiao L. 2018. Genetic diversity and population structure of Cryptosporidium. Trends in Parasitology, 34, 997–1011. [CrossRef] [PubMed] [Google Scholar]
  63. Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. 2018. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Medicine, 7, 6124–6136. [CrossRef] [PubMed] [Google Scholar]
  64. Fournet N, Deege MP, Urbanus AT, Nichols G, Rosner BM, Chalmers RM, Gorton R, Pollock KG, van der Giessen JW, Wever PC, Dorigo-Zetsma JW, Mulder B, Mank TG, Overdevest I, Kusters JG, van Pelt WKortbeek LM. 2013. Simultaneous increase of Cryptosporidium infections in the Netherlands, the United Kingdom and Germany in late summer season, 2012. Euro Surveillance, 18, 20348. [PubMed] [Google Scholar]
  65. Gaafar MR. 2012. Efficacy of Allium sativum (garlic) against experimental cryptosporidiosis. Alexandria Journal of Medicine, 48, 59–66. [CrossRef] [Google Scholar]
  66. GBD 2016 Diarrhoeal Disease Collaborators. 2018. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infectious Diseases, 18, 1211–1228. [CrossRef] [Google Scholar]
  67. Gerace E, Lo Presti VDM, Biondo C. 2019. Cryptosporidium infection: Epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology & Immunology, 9, 119–123. [CrossRef] [PubMed] [Google Scholar]
  68. Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC. 2019. Cryptosporidiosis outbreaks – United States, 2009–2017. Morbidity and Mortality Weekly Report, 68, 568–572. [CrossRef] [PubMed] [Google Scholar]
  69. Giridharan S, Srinivasan M. 2018. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. Journal of Inflammation Research, 11, 407–419. [CrossRef] [Google Scholar]
  70. Gorla SK, McNair NN, Yang G, Gao S, Hu M, Jala VR, Haribabu B, Striepen B, Cuny GD, Mead JR, Hedstrom L. 2014. Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrobial Agents and Chemotherapy, 58, 1603–1614. [CrossRef] [PubMed] [Google Scholar]
  71. Greenwood BM, Bojang K, Whitty CJM, Targett GAT. 2005. Malaria. Lancet, 365, 1487–1498. [CrossRef] [PubMed] [Google Scholar]
  72. Guo F, Zhang H, Fritzler JM, Rider SD, Xiang L, McNair NN, Mead JR, Zhu G. 2014. Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases. Journal of Infectious Diseases, 209, 1279–1287. [CrossRef] [PubMed] [Google Scholar]
  73. Guo F, Zhang H, Payne HR, Zhu G. 2016. Differential gene expression and protein localization of Cryptosporidium parvum fatty acyl-CoA synthetase isoforms. Journal of Eukaryotic Microbiology, 63, 233–246. [CrossRef] [PubMed] [Google Scholar]
  74. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, Liu Y, Wang J, Dougherty U, Bissonnette MB, Shen B, Weichselbaum RR, Xu MM, He C. 2019. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature, 566, 270–274. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  75. Hasan MM, Stebbins EE, Choy RKM, Gillespie JR, de Hostos EL, Miller P, Mushtaq A, Ranade RM, Teixeira JE, Verlinde CLMJ, Sateriale A, Zhang Z, Osbourn DM, Griggs DW, Fan E, Buckner FS, Huston CD. 2021. Spontaneous selection of Cryptosporidium drug resistance in a calf model of infection. Antimicrobial Agents and Chemotherapy, 65, e00023–21. [CrossRef] [PubMed] [Google Scholar]
  76. Hashmey R, Smith NH, Cron S, Graviss EA, Chappell CL, White AC. 1997. Cryptosporidiosis in Houston, Texas. A report of 95 cases. Medicine, 76, 118–139. [CrossRef] [PubMed] [Google Scholar]
  77. Hawash Y, Ghonaim M, Hussein Y, Alhazmi A, Alturkistani A. 2015. Identification of Giardia lamblia and the human infectious-species of Cryptosporidium in drinking water resources in Western Saudi Arabia by nested-PCR assays. Tropical Biomedicine, 32, 216–224. [PubMed] [Google Scholar]
  78. Hayden MS, Ghosh S. 2008. Shared principles in NF-kappaB signaling. Cell, 132, 344–362. [CrossRef] [PubMed] [Google Scholar]
  79. Hazaa IKK, Al-Taai NA, Khalil NK, Zakri AMM. 2016. Efficacy of garlic and onion oils on murin experimental Cryptosporidium parvum infection. Al-Anbar Journal of Veterinary Sciences, 9(2), 69–74. [Google Scholar]
  80. He X, Fang J, Huang L, Wang J, Huang X. 2015. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology, 172, 10–29. [CrossRef] [PubMed] [Google Scholar]
  81. Hedstrom L. 2009. IMP dehydrogenase: structure, mechanism, and inhibition. Chemical Reviews, 109, 2903–2928. [CrossRef] [PubMed] [Google Scholar]
  82. Hellard M, Hocking J, Willis J, Dore G, Fairley C. 2003. Risk factors leading to Cryptosporidium infection in men who have sex with men. Sexually Transmitted Infections, 79, 412–414. [CrossRef] [PubMed] [Google Scholar]
  83. Helmy YA, Hafez HM. 2022. Cryptosporidiosis: From prevention to treatment, a narrative review. Microorganisms, 10, 2456. [CrossRef] [PubMed] [Google Scholar]
  84. Hemmings BA, Restuccia DF. 2015. The PI3K-PKB/Akt pathway. Cold Spring Harbor Perspectives in Biology, 7, a026609. [CrossRef] [PubMed] [Google Scholar]
  85. Hewitt RG, Yiannoutsos CT, Higgs ES, Carey JT, Geiseler PJ, Soave R, Rosenberg R, Vazquez GJ, Wheat LJ, Fass RJ, Antoninievic Z, Walawander AL, Flanigan TP, Bender JF. 2000. Paromomycin: no more effective than placebo for treatment of cryptosporidiosis in patients with advanced human immunodeficiency virus infection. AIDS Clinical Trial Group. Clinical Infectious Diseases, 31, 1084–1092. [CrossRef] [PubMed] [Google Scholar]
  86. Hicks P, Zwiener RJ, Squires J, Savell V. 1996. Azithromycin therapy for Cryptosporidium parvum infection in four children infected with human immunodeficiency virus. Journal of Pediatrics, 129, 297–300. [CrossRef] [Google Scholar]
  87. Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, Morash MG. 2007. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 51, 868–876. [CrossRef] [PubMed] [Google Scholar]
  88. Huang W, Hulverson MA, Choi R, Arnold SLM, Zhang Z, McCloskey MC, Whitman GR, Hackman RC, Rivas KL, Barrett LK, Ojo KK, Van Voorhis WC, Fan E. 2019. Development of 5-aminopyrazole-4-carboxamide-based bumped-kinase inhibitors for Cryptosporidiosis therapy. Journal of Medicinal Chemistry, 62, 3135–3146. [CrossRef] [PubMed] [Google Scholar]
  89. Hulverson MA, Choi R, Arnold SLM, Schaefer DA, Hemphill A, McCloskey MC, Betzer DP, Müller J, Vidadala RSR, Whitman GR, Rivas KL, Barrett LK, Hackman RC, Love MS, McNamara CW, Shaughnessy TK, Kondratiuk A, Kurnick M, Banfor PN, Lynch JJ, Freiberg GM, Kempf DJ, Maly DJ, Riggs MW, Ojo KK, Van Voorhis WC. 2017. Advances in bumped kinase inhibitors for human and animal therapy for cryptosporidiosis. International Journal for Parasitology, 47, 753–763. [CrossRef] [PubMed] [Google Scholar]
  90. Hulverson MA, Choi R, Vidadala RSR, Whitman GR, Vidadala VN, Ojo KK, Barrett LK, Lynch JJ, Marsh K, Kempf DJ, Maly DJ, Van Voorhis WC. 2021. Pyrrolopyrimidine bumped kinase inhibitors for the treatment of cryptosporidiosis. ACS Infectious Diseases, 7, 1200–1207. [CrossRef] [PubMed] [Google Scholar]
  91. Hulverson MA, Vinayak S, Choi R, Schaefer DA, Castellanos-Gonzalez A, Vidadala RSR, Brooks CF, Herbert GT, Betzer DP, Whitman GR, Sparks HN, Arnold SLM, Rivas KL, Barrett LK, White AC, Maly DJ, Riggs MW, Striepen B, Van Voorhis WC, Ojo KK. 2017. Bumped-kinase inhibitors for cryptosporidiosis therapy. Journal of Infectious Diseases, 215, 1275–1284. [CrossRef] [PubMed] [Google Scholar]
  92. Hussien SMM, Abdella OH, Abu-Hashim AH, Aboshiesha GA, Taha MAA, El-Shemy AS, El-Bader MM. 2013. Comparative study between the effect of nitazoxanide and paromomycine in treatment of cryptosporidiosis in hospitalized children. Journal of the Egyptian Society of Parasitology, 43, 463–470. [PubMed] [Google Scholar]
  93. Iroh Tam P, Arnold SLM, Barrett LK, Chen CR, Conrad TM, Douglas E, Gordon MA, Hebert D, Henrion M, Hermann D, Hollingsworth B, Houpt E, Jere KC, Lindblad R, Love MS, Makhaza L, McNamara CW, Nedi W, Nyirenda J, Operario DJ, Phulusa J, Quinnan GV, Sawyer LA, Thole H, Toto N, Winter A, Van Voorhis WC. 2021. Clofazimine for treatment of cryptosporidiosis in human immunodeficiency virus infected adults: An experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial. Clinical Infectious Diseases, 73, 183–191. [CrossRef] [PubMed] [Google Scholar]
  94. Jafary F, Ganjalikhany MR, Moradi A, Hemati M, Jafari S. 2019. Novel peptide inhibitors for lactate dehydrogenase a (LDHA): A survey to inhibit LDHA activity via disruption of protein-protein interaction. Scientific Reports, 9, 4686. [CrossRef] [PubMed] [Google Scholar]
  95. Jain V, Yogavel M, Kikuchi H, Oshima Y, Hariguchi N, Matsumoto M, Goel P, Touquet B, Jumani RS, Tacchini-Cottier F, Harlos K, Huston CD, Hakimi M-A, Sharma A. 2017. Targeting Prolyl-tRNA synthetase to accelerate drug discovery against malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis, and coccidiosis. Structure, 25, 1495–1505.e6. [CrossRef] [PubMed] [Google Scholar]
  96. Jefferies R, Yang R, Woh CK, Weldt T, Milech N, Estcourt A, Armstrong T, Hopkins R, Watt P, Reid S, Armson A, Ryan UM. 2015. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer® peptides. Experimental Parasitology, 148, 40–48. [CrossRef] [PubMed] [Google Scholar]
  97. Ji R, Liang R, Guan Z, Li R, Fu Y, Wang H. 2018. The role of TLR4/NF-κB signaling pathway in Cryptosporidim parvum infection. Chinese Journal of Parasitology and Parasitic Diseases, 36, 361–365. [Google Scholar]
  98. Ji R, Liang R, Guan Z, Li R, Fu Y, Wang H. 2018. Effect of oxymatrine on Toll-like receptors on intestinal mucosa of mice infected by Cryptosporidium parvum. Chinese Journal of Parasitology and Parasitic Diseases, 36, 455–459+482. [Google Scholar]
  99. Jurenka JS. 2009. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternative Medicine Review, 14, 141–153. [PubMed] [Google Scholar]
  100. Kayamba F, Faya M, Pooe OJ, Kushwaha B, Kushwaha ND, Obakachi VA, Nyamori VO, Karpoormath R. 2021. Lactate dehydrogenase and malate dehydrogenase: Potential antiparasitic targets for drug development studies. Bioorganic & Medicinal Chemistry, 50, 116458. [CrossRef] [PubMed] [Google Scholar]
  101. Khalil IA, Troeger C, Rao PC, Blacker BF, Brown A, Brewer TG, Colombara DV, De Hostos EL, Engmann C, Guerrant RL, Haque R, Houpt ER, Kang G, Korpe PS, Kotloff KL, Lima AAM, Petri WA, Platts-Mills JA, Shoultz DA, Forouzanfar MH, Hay SI, Reiner RC, Mokdad AH. 2018. Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: a meta-analyses study. Lancet Global Health, 6, e758–e768. [CrossRef] [Google Scholar]
  102. Khalil AM, Yasuda M, Farid AS, Desouky MI, Mohi-Eldin MM, Haridy M, Horii Y. 2015. Immunomodulatory and antiparasitic effects of garlic extract on Eimeria vermiformis-infected mice. Parasitology Research, 114, 2735–2742. [CrossRef] [PubMed] [Google Scholar]
  103. Khan SM, Witola WH. 2023. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: A comprehensive review. Frontiers in Cellular and Infection Microbiology, 13, 1115522. [CrossRef] [PubMed] [Google Scholar]
  104. Kirubakaran S, Gorla SK, Sharling L, Zhang M, Liu X, Ray SS, Macpherson IS, Striepen B, Hedstrom L, Cuny GD. 2012. Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorganic & Medicinal Chemistry Letters, 22, 1985–1988. [CrossRef] [PubMed] [Google Scholar]
  105. Klein P, Kleinová T, Volek Z, Simůnek J. 2008. Effect of Cryptosporidium parvum infection on the absorptive capacity and paracellular permeability of the small intestine in neonatal calves. Veterinary Parasitology, 152, 53–59. [CrossRef] [PubMed] [Google Scholar]
  106. Kong B, Bai L, Yang L. 2024. Effect of matrine on intestinal mucosal injury in rats with inflammatory bowel disease by regulating IL-6/STAT3 signaling pathway. Journal of Guangzhou University of Traditional Chinese Medicine, 41, 1277–1284. [Google Scholar]
  107. Korpe PS, Gilchrist C, Burkey C, Taniuchi M, Ahmed E, Madan V, Castillo R, Ahmed S, Arju T, Alam M, Kabir M, Ahmed T, Petri WA, Haque R, Faruque ASG, Duggal P. 2019. Case-control study of Cryptosporidium transmission in Bangladeshi households. Clinical Infectious Diseases, 68, 1073–1079. [CrossRef] [PubMed] [Google Scholar]
  108. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet, 382, 209–222. [CrossRef] [PubMed] [Google Scholar]
  109. Krstin S, Sobeh M, Braun MS, Wink M. 2018. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicines, 5, 37. [CrossRef] [PubMed] [Google Scholar]
  110. Kumar VP, Cisneros JA, Frey KM, Castellanos-Gonzalez A, Wang Y, Gangjee A, White AC, Jorgensen WL, Anderson KS. 2014. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase. Bioorganic & Medicinal Chemistry Letters, 24, 4158–4161. [CrossRef] [PubMed] [Google Scholar]
  111. Kwakye-Nuako G, Boampong JN, Dong MK, Obiri-Yeboah D, Opoku YK, Amoako-Sakyi D, Asare KK. 2016. Modulation of cyptosporidiosis by CD4 levels in chronic diarrhoea HIV/AIDS individuals visiting Tarkwa Municipal hospital, Ghana. Asian Pacific Journal of Tropical Disease, 6, 770–775. [Google Scholar]
  112. Lee S, Ginese M, Beamer G, Danz HR, Girouard DJ, Chapman-Bonofiglio SP, Lee M, Hulverson MA, Choi R, Whitman GR, Ojo KK, Arnold SLM, Van Voorhis WC, Tzipori S, Therapeutic efficacy of bumped kinase inhibitor 1369 in a pig model of acute diarrhea caused by Cryptosporidium hominis, Antimicrobial Agents and Chemotherapy (2018) 62, e00147–18. [Google Scholar]
  113. Lendner M, Böttcher D, Delling C, Ojo KK, Van Voorhis WC, Daugschies A. 2015. A novel CDPK1 inhibitor–a potential treatment for cryptosporidiosis in calves? Parasitology Research, 114, 335–336. [CrossRef] [PubMed] [Google Scholar]
  114. Li M, Gong A-Y, Zhang X-T, Wang Y, Mathy NW, Martins GA, Strauss-Soukup JK, Chen X-M. 2018. Induction of a long noncoding RNA transcript, NR_045064, promotes defense gene transcription and facilitates intestinal epithelial cell responses against Cryptosporidium infection. Journal of Immunology, 201, 3630–3640. [CrossRef] [PubMed] [Google Scholar]
  115. Li K, Nader SM, Zhang X, Ray BC, Kim CY, Das A, Witola WH. 2019. Novel lactate dehydrogenase inhibitors with in vivo efficacy against Cryptosporidium parvum. PLoS Pathogens, 15, e1007953. [CrossRef] [PubMed] [Google Scholar]
  116. Li Z, Yu Q, Zhang N, Li J, Gong P, Li X, Wang X, Zhang X. 2023. Cryptosporidium parvum induces autophagy via PI3K/Akt/mTOR pathway in HCT-8 Cells. Chinese Journal of Veterinary Science, 1–7. [Google Scholar]
  117. Lidumniece E, Withers-Martinez C, Hackett F, Collins CR, Perrin AJ, Koussis K, Bisson C, Blackman MJ, Jirgensons A. 2021. Peptidic boronic acids are potent cell-permeable inhibitors of the malaria parasite egress serine protease SUB1. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022696118. [CrossRef] [PubMed] [Google Scholar]
  118. Lin Y, He F, Wu L, Xu Y, Du Q. 2022. Matrine exerts pharmacological effects through multiple signaling pathways: A comprehensive review. Drug Design, Development and Therapy, 16, 533–569. [CrossRef] [Google Scholar]
  119. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. 2018. Ribosome-targeting antibiotics: Modes of action, mechanisms of resistance, and implications for drug design. Annual Review of Biochemistry, 87, 451–478. [CrossRef] [PubMed] [Google Scholar]
  120. Liu X-J, Cao M-A, Li W-H, Shen C-S, Yan S-Q, Yuan C-S. 2010. Alkaloids from Sophora flavescens Aition. Fitoterapia, 81, 524–527. [CrossRef] [PubMed] [Google Scholar]
  121. Liu A, Gong B, Liu X, Shen Y, Wu Y, Zhang W, Cao J. 2020. A retrospective epidemiological analysis of human Cryptosporidium infection in China during the past three decades (1987–2018). PLoS Neglected Tropical Diseases, 14, e0008146. [CrossRef] [PubMed] [Google Scholar]
  122. Liu M, Zhang D, Wang D, Wu X, Zhang Y, Yin J, Zhu G. 2023. Cost-effective in vivo and in vitro mouse models for evaluating anticryptosporidial drug efficacy: assessing vorinostat, docetaxel, and baicalein. Journal of Infectious Diseases, 228(10), 1430–1440. [CrossRef] [PubMed] [Google Scholar]
  123. Love MS, Beasley FC, Jumani RS, Wright TM, Chatterjee AK, Huston CD, Schultz PG, McNamara CW. 2017. A high-throughput phenotypic screen identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Neglected Tropical Diseases, 11, e0005373. [CrossRef] [PubMed] [Google Scholar]
  124. Lu X, Li N, Qiao X, Qiu Z, Liu P. 2017. Composition analysis and antioxidant properties of black garlic extract. Journal of Food and Drug Analysis, 25:340–349. [CrossRef] [PubMed] [Google Scholar]
  125. Lu C, Liu X, Liu J, Tang X, Zhu G, Striepen B, Suo X. 2022. Immunocompetent rabbits infected with Cryptosporidium cuniculus as an animal model for anti-cryptosporidial drug testing. International Journal for Parasitology, 52, 205–210. [CrossRef] [PubMed] [Google Scholar]
  126. Madbouly N, El Amir A, Abdel Kader A, Rabee I, Farid A. 2021. The immunomodulatory activity of secnidazole-nitazoxanide in a murine cryptosporidiosis model. Journal of Medical Microbiology, 70(3), 1–12. [CrossRef] [Google Scholar]
  127. Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, McCormick BJ, McGrath M, Olortegui MP, Samie A, Shakoor S, Mondal D, Lima IF, Hariraju D, Rayamajhi BB, Qureshi S, Kabir F, Yori PP, Mufamadi B, Amour C, Carreon JD, Richard SA, Lang D, Bessong P, Mduma E, Ahmed T, Lima AA, Mason CJ, Zaidi AK, Bhutta ZA, Kosek M, Guerrant RL, Gottlieb M, Miller M, Kang G, HouptER, MAL-ED Network Investigators. 2015. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Global Health, 3, e564–575. [CrossRef] [Google Scholar]
  128. Mammeri M, Chevillot A, Thomas M, Polack B, Julien C, Marden J-P, Auclair E, Vallée I, Adjou KT. 2018. Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice. Experimental Parasitology, 194, 1–8. [CrossRef] [PubMed] [Google Scholar]
  129. Manjunatha UH, Lakshminarayana SB, Jumani RS, Chao AT, Young JM, Gable JE, Knapp M, Hanna I, Galarneau J-R, Cantwell J, Kulkarni U, Turner M, Lu P, Darrell KH, Watson LC, Chan K, Patra D, Mamo M, Luu C, Cuellar C, Shaul J, Xiao L, Chen Y-B, Carney SK, Lakshman J, Osborne CS, Zambriski JA, Aziz N, Sarko C, Diagana TT. 2024. Cryptosporidium PI(4)K inhibitor EDI048 is a gut-restricted parasiticidal agent to treat paediatric enteric cryptosporidiosis. Nature Microbiology, 9, 2817–2835. [CrossRef] [PubMed] [Google Scholar]
  130. Manjunatha UH, Vinayak S, Zambriski JA, Chao AT, Sy T, Noble CG, Bonamy GMC, Kondreddi RR, Zou B, Gedeck P, Brooks CF, Herbert GT, Sateriale A, Tandel J, Noh S, Lakshminarayana SB, Lim SH, Goodman LB, Bodenreider C, Feng G, Zhang L, Blasco F, Wagner J, Leong FJ, Striepen B, Diagana TT. 2017. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature, 546, 376–380. [CrossRef] [PubMed] [Google Scholar]
  131. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, Ferroni L, Patergnani S, Missiroli S, Goitre L, Trabalzini L, Rimessi A, Giorgi C, Zavan B, Cassoni P, Dejana E, Retta SF, Pinton P. 2015. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Molecular Medicine, 7, 1403–1417. [CrossRef] [PubMed] [Google Scholar]
  132. Martucci WE, Rodriguez JM, Vargo MA, Marr M, Hamilton AD, Anderson KS. 2013. Exploring novel strategies for AIDS protozoal pathogens: α-helix mimetics targeting a key allosteric protein-protein interaction in C. hominis TS-DHFR. MedChemComm, 4. https://doi.org/10.1039/C3MD00141E [PubMed] [Google Scholar]
  133. Martucci WE, Udier-Blagovic M, Atreya C, Babatunde O, Vargo MA, Jorgensen WL, Anderson KS. 2009. Novel non-active site inhibitor of Cryptosporidium hominis TS-DHFR identified by a virtual screen. Bioorganic & Medicinal Chemistry Letters, 19, 418–423. [CrossRef] [PubMed] [Google Scholar]
  134. Masterson JE, Schwartz SD. 2014. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path. Chemical Physics, 442, 132–136. [CrossRef] [Google Scholar]
  135. Mathy NW, Deng S, Gong A-Y, Li M, Wang Y, Burleigh O, Kochvar A, Whiteford ER, Shibata A, Chen X-M. 2022. The long non-coding RNA Nostrill regulates transcription of irf7 through interaction with nf-κb p65 to enhance intestinal epithelial defense against Cryptosporidium parvum. Frontiers in Immunology, 13, 863957. [CrossRef] [PubMed] [Google Scholar]
  136. McLaughlin NP, Evans P, Pines M. 2014. The chemistry and biology of febrifugine and halofuginone. Bioorganic & Medicinal Chemistry, 22, 1993–2004. [CrossRef] [PubMed] [Google Scholar]
  137. McNamara CW, Lee MC, Lim CS, Lim SH, Roland J, Simon O, Yeung BK, Chatterjee AK, McCormack SL, Manary MJ, Zeeman A-M, Dechering KJ, Kumar TS, Henrich PP, Gagaring K, Ibanez M, Kato N, Kuhen KL, Fischli C, Nagle A, Rottmann M, Plouffe DM, Bursulaya B, Meister S, Rameh L, Trappe J, Haasen D, Timmerman M, Sauerwein RW, Suwanarusk R, Russell B, Renia L, Nosten F, Tully DC, Kocken CH, Glynne RJ, Bodenreider C, Fidock DA, Diagana TT, Winzeler EA. 2013. Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 504, 248–253. [CrossRef] [PubMed] [Google Scholar]
  138. Mohammed LS, Sallam EA, El Basuni SS, Eldiarby AS, Soliman MM, Aboelenin SM, Shehata SF. 2021. Ameliorative effect of neem leaf and pomegranate peel extracts in coccidial infections in New Zealand and v-line rabbits: Performance, intestinal health, oocyst shedding, carcass traits, and effect on economic measures. Animals, 11, 2441. [CrossRef] [PubMed] [Google Scholar]
  139. Mohebali M, Yimam Y, Woreta A. 2020. Cryptosporidium infection among people living with HIV/AIDS in Ethiopia: a systematic review and meta-analysis. Pathogens and Global Health, 114, 183–193. [CrossRef] [PubMed] [Google Scholar]
  140. Murphy RC, Ojo KK, Larson ET, Castellanos-Gonzalez A, Perera BGK, Keyloun KR, Kim JE, Bhandari JG, Muller NR, Verlinde CLMJ, White AC, Merritt EA, Van Voorhis WC, Maly DJ. 2010. Discovery of potent and selective inhibitors of calcium-dependent protein kinase 1 (CDPK1) from C. parvum and T. gondii. ACS Medicinal Chemistry Letters, 1, 331–335. [CrossRef] [PubMed] [Google Scholar]
  141. Na B-K, Kang J-M, Cheun H-I, Cho S-H, Moon S-U, Kim T-S, Sohn W-M. 2009. Cryptopain-1, a cysteine protease of Cryptosporidium parvum, does not require the pro-domain for folding. Parasitology, 136, 149–157. [CrossRef] [PubMed] [Google Scholar]
  142. Nava S, White AC, Castellanos-González A. 2019. Cryptosporidium parvum subtilisin-like serine protease (SUB1) is crucial for parasite egress from host cells. Infection and Immunity, 87, e00784–18. [CrossRef] [PubMed] [Google Scholar]
  143. Ndao M, Nath-Chowdhury M, Sajid M, Marcus V, Mashiyama ST, Sakanari J, Chow E, Mackey Z, Land KM, Jacobson MP, Kalyanaraman C, McKerrow JH, Arrowood MJ, Caffrey CR. 2013. A cysteine protease inhibitor rescues mice from a lethal Cryptosporidium parvum infection. Antimicrobial Agents and Chemotherapy, 57, 6063–6073. [CrossRef] [PubMed] [Google Scholar]
  144. Nguyen-Ho-Bao T, Ambe LA, Berberich M, Hermosilla C, Taubert A, Daugschies A, Kamena F. 2022. Octaarginine improves the efficacy of nitazoxanide against Cryptosporidium parvum. Pathogens, 11, 653. [CrossRef] [PubMed] [Google Scholar]
  145. Nime FA, Burek JD, Page DL, Holscher MA, Yardley JH. 1976. Acute enterocolitis in a human being infected with the protozoan Cryptosporidium. Gastroenterology, 70, 592–598. [CrossRef] [PubMed] [Google Scholar]
  146. O’Hara SP, Bogert PST, Trussoni CE, Chen X, LaRusso NF. 2011. TLR4 promotes Cryptosporidium parvum clearance in a mouse model of biliary cryptosporidiosis. Journal of Parasitology, 97, 813–821. [CrossRef] [PubMed] [Google Scholar]
  147. Omolabi KF, Agoni C, Olotu FA, Soliman MES. 2021. Molecular basis of P131 cryptosporidial-IMPDH selectivity – structural, dynamical and mechanistic stance. Cell Biochemistry and Biophysics, 79, 11–24. [CrossRef] [PubMed] [Google Scholar]
  148. Palencia A, Liu R-J, Lukarska M, Gut J, Bougdour A, Touquet B, Wang E-D, Li X, Alley MRK, Freund YR, Rosenthal PJ, Hakimi M-A, Cusack S. 2016. Cryptosporidium and Toxoplasma parasites are inhibited by a benzoxaborole targeting Leucyl-tRNA synthetase. Antimicrobial Agents and Chemotherapy, 60, 5817–5827. [CrossRef] [PubMed] [Google Scholar]
  149. Pawlowic MC, Somepalli M, Sateriale A, Herbert GT, Gibson AR, Cuny GD, Hedstrom L, Striepen B. 2019. Genetic ablation of purine salvage in Cryptosporidium parvum reveals nucleotide uptake from the host cell. Proceedings of the National Academy of Sciences of the United States of America, 116, 21160–21165. [CrossRef] [PubMed] [Google Scholar]
  150. Petermann J, Paraud C, Pors I, Chartier C. 2014. Efficacy of halofuginone lactate against experimental cryptosporidiosis in goat neonates. Veterinary Parasitology, 202, 326–329. [CrossRef] [PubMed] [Google Scholar]
  151. Rahman SU, Gong H, Mi R, Huang Y, Han X, Chen Z. 2021. Chitosan protects immunosuppressed mice against Cryptosporidium parvum infection through TLR4/STAT1 signaling pathways and gut microbiota modulation. Frontiers in Immunology, 12, 784683. [Google Scholar]
  152. Rahman SU, Zhou K, Zhou S, Sun T, Mi R, Huang Y, Han X, Gong H, Chen Z. 2022. Curcumin mitigates Cryptosporidium parvum infection through modulation of gut microbiota and innate immune-related genes in immunosuppressed neonatal mice. Microbial Pathogenesis, 164, 105424. [CrossRef] [PubMed] [Google Scholar]
  153. Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CAD. 2020. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Review of Anti-Infective Therapy, 18, 367–379. [CrossRef] [PubMed] [Google Scholar]
  154. Ramana CV, Gil MP, Schreiber RD, Stark GR. 2002. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends in Immunology, 23, 96–101. [CrossRef] [PubMed] [Google Scholar]
  155. Ranasinghe S, Zahedi A, Armson A, Lymbery AJ, Ash A. 2022. In vitro susceptibility of Cryptosporidium parvum to plant antiparasitic compounds. Pathogens, 12, 61. [CrossRef] [PubMed] [Google Scholar]
  156. Real E, Rodrigues L, Cabal GG, Enguita FJ, Mancio-Silva L, Mello-Vieira J, Beatty W, Vera IM, Zuzarte-Luís V, Figueira TN, Mair GR, Mota MM. 2018. Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes. Nature Microbiology, 3, 17–25. [Google Scholar]
  157. Rossignol J-F, Kabil SM, el-Gohary Y, Younis AM. 2006. Effect of nitazoxanide in diarrhea and enteritis caused by Cryptosporidium species. Clinical Gastroenterology and Hepatology, 4, 320–324. [CrossRef] [PubMed] [Google Scholar]
  158. Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W. 2001. Pyruvate: NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Molecular Biology and Evolution, 18, 710–720. [CrossRef] [PubMed] [Google Scholar]
  159. Ruiz V, Czyzyk DJ, Valhondo M, Jorgensen WL, Anderson KS. 2019. Novel allosteric covalent inhibitors of bifunctional Cryptosporidium hominis TS-DHFR from parasitic protozoa identified by virtual screening. Bioorganic & Medicinal Chemistry Letters, 29, 1413–1418. [CrossRef] [PubMed] [Google Scholar]
  160. Ryan U, Hijjawi N, Xiao L. 2018. Foodborne cryptosporidiosis. International Journal for Parasitology, 48, 1–12. [CrossRef] [PubMed] [Google Scholar]
  161. Sarwono AEY, Mitsuhashi S, Kabir MHB, Shigetomi K, Okada T, Ohsaka F, Otsuguro S, Maenaka K, Igarashi M, Kato K, Ubukata M. 2019. Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 171–178. [CrossRef] [PubMed] [Google Scholar]
  162. Savioli L, Smith H, Thompson A. 2006. Giardia and Cryptosporidium join the “Neglected Diseases Initiative”. Trends in Parasitology, 22, 203–208. [CrossRef] [PubMed] [Google Scholar]
  163. Schaefer DA, Betzer DP, Smith KD, Millman ZG, Michalski HC, Menchaca SE, Zambriski JA, Ojo KK, Hulverson MA, Arnold SLM, Rivas KL, Vidadala RSR, Huang W, Barrett LK, Maly DJ, Fan E, Van Voorhis WC, Riggs MW. 2016. Novel bumped kinase inhibitors are safe and effective therapeutics in the calf clinical model for cryptosporidiosis. Journal of Infectious Diseases, 214, 1856–1864. [CrossRef] [PubMed] [Google Scholar]
  164. Shahiduzzaman M, Dyachenko V, Obwaller A, Unglaube S, Daugschies A. 2009. Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum. Veterinary Parasitology, 162, 271–277. [CrossRef] [PubMed] [Google Scholar]
  165. Shakya A, Bhat HR, Ghosh SK. 2018. Update on nitazoxanide: A multifunctional chemotherapeutic agent. Current Drug Discovery Technologies, 15, 201–213. [CrossRef] [PubMed] [Google Scholar]
  166. Shirley D-AT, Moonah SN, Kotloff KL. 2012. Burden of disease from cryptosporidiosis. Current Opinion in Infectious Diseases, 25, 555–563. [CrossRef] [PubMed] [Google Scholar]
  167. Smith RP, Chalmers RM, Mueller-Doblies D, Clifton-Hadley FA, Elwin K, Watkins J, Paiba GA, Hadfield SJ, Giles M. 2010. Investigation of farms linked to human patients with cryptosporidiosis in England and Wales. Preventive Veterinary Medicine, 94, 9–17. [CrossRef] [PubMed] [Google Scholar]
  168. Stark A-K, Sriskantharajah S, Hessel EM, Okkenhaug K. 2015. PI3K inhibitors in inflammation, autoimmunity and cancer. Current Opinion in Pharmacology, 23, 82–91. [CrossRef] [PubMed] [Google Scholar]
  169. Szychowski KA, Rybczyńska-Tkaczyk K, Gaweł-Bęben K, Świeca M, Karaś M, Jakubczyk A, Matysiak M, Binduga UE, Gmiński J. 2018. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Polish Journal of Food and Nutrition Sciences, 68, 73–81. [CrossRef] [Google Scholar]
  170. Toriro R, Pallett S, Woolley S, Bennett C, Hale I, Heylings J, Wilkins D, Connelly T, Muia K, Avery P, Stuart A, Morgan L, Davies M, Nevin W, Quantick O, Robinson G, Elwin K, Chalmers R, Burns D, Beeching N, Fletcher T, O’Shea M. 2024. Outbreak of diarrhea caused by a novel Cryptosporidium hominis subtype during British military training in Kenya. Open Forum Infectious Diseases, 11, ofae001. [CrossRef] [PubMed] [Google Scholar]
  171. Trotz-Williams LA, Jarvie BD, Peregrine AS, Duffield TF, Leslie KE. 2011. Efficacy of halofuginone lactate in the prevention of cryptosporidiosis in dairy calves, Veterinary Record, 168, 509. [CrossRef] [PubMed] [Google Scholar]
  172. Utami WS, Murhandarwati EH, Artama WT, Kusnanto H. 2020. Cryptosporidium infection increases the risk for chronic diarrhea among people living with HIV in Southeast Asia: A systematic review and meta-analysis. Asia-Pacific Journal of Public Health, 32, 8–18. [CrossRef] [PubMed] [Google Scholar]
  173. Van Voorhis WC, Hulverson MA, Choi R, Huang W, Arnold SLM, Schaefer DA, Betzer DP, Vidadala RSR, Lee S, Whitman GR, Barrett LK, Maly DJ, Riggs MW, Fan E, Kennedy TJ, Tzipori S, Doggett JS, Winzer P, Anghel N, Imhof D, Müller J, Hemphill A, Ferre I, Sanchez-Sanchez R, Ortega-Mora LM, Ojo KK. 2021. One health therapeutics: Target-based drug development for cryptosporidiosis and other Apicomplexa diseases. Veterinary Parasitology, 289, 109336. [CrossRef] [PubMed] [Google Scholar]
  174. Vargas SL, Shenep JL, Flynn PM, Pui CH, Santana VM, Hughes WT. 1993. Azithromycin for treatment of severe Cryptosporidium diarrhea in two children with cancer. Journal of Pediatrics, 123, 154–156. [CrossRef] [Google Scholar]
  175. Vélez J, Lange MK, Zieger P, Yoon I, Failing K, Bauer C. 2019. Long-term use of yeast fermentation products in comparison to halofuginone for the control of cryptosporidiosis in neonatal calves. Veterinary Parasitology, 269, 57–64. [CrossRef] [PubMed] [Google Scholar]
  176. Viel H, Rocques H, Martin J, Chartier C. 2007. Efficacy of nitazoxanide against experimental cryptosporidiosis in goat neonates. Parasitology Research, 102, 163–166. [CrossRef] [PubMed] [Google Scholar]
  177. Vinayak S, Jumani RS, Miller P, Hasan MM, McLeod BI, Tandel J, Stebbins EE, Teixeira JE, Borrel J, Gonse A, Zhang M, Yu X, Wernimont A, Walpole C, Eckley S, Love MS, McNamara CW, Sharma M, Sharma A, Scherer CA, Kato N, Schreiber SL, Melillo B, Striepen v, Huston CD, Comer E. 2020. Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase. Science Translational Medicine, 12, eaba8412. [CrossRef] [PubMed] [Google Scholar]
  178. Wang Z-D, Liu Q, Liu H-H, Li S, Zhang L, Zhao Y-K, Zhu X-Q. 2018. Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: a global systematic review and meta-analysis. Parasites & Vectors, 11, 28. [CrossRef] [PubMed] [Google Scholar]
  179. Wang C, Liu L, Zhu H, Zhang L, Wang R, Zhang Z, Huang J, Zhang S, Jian F, Ning C, Zhang L. 2019. MicroRNA expression profile of HCT-8 cells in the early phase of Cryptosporidium parvum infection. BMC Genomics, 20, 37. [CrossRef] [PubMed] [Google Scholar]
  180. Weber-Nordt RM, Mertelsmann R, Finke J. 1998. The JAK-STAT pathway: signal transduction involved in proliferation, differentiation and transformation. Leukemia & Lymphoma, 28, 459–467. [CrossRef] [PubMed] [Google Scholar]
  181. Wee P, Wang Z. 2017. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 9, 52. [CrossRef] [PubMed] [Google Scholar]
  182. Weimar JD, DiRusso CC, Delio R, Black PN. 2002. Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. Journal of Biological Chemistry, 277, 29369–29376. [CrossRef] [Google Scholar]
  183. Weyl-Feinstein S, Markovics A, Eitam H, Orlov A, Yishay M, Agmon R, Miron J, Izhaki I, Shabtay A. 2014. Effect of pomegranate-residue supplement on Cryptosporidium parvum oocyst shedding in neonatal calves. Journal of Dairy Science, 97, 5800–5805. [CrossRef] [PubMed] [Google Scholar]
  184. White AC, Chappell CL, Hayat CS, Kimball KT, Flanigan TP, Goodgame RW. 1994. Paromomycin for cryptosporidiosis in AIDS: a prospective, double-blind trial. Journal of Infectious Diseases, 170, 419–424. [CrossRef] [PubMed] [Google Scholar]
  185. Woolsey ID, Zeller WE, Blomstrand BM, Øines Ø, Enemark HL. 2022. Effects of selected condensed tannins on Cryptosporidium parvum growth and proliferation in HCT-8 cell cultures. Experimental Parasitology, 241, 108353. [CrossRef] [PubMed] [Google Scholar]
  186. Xia Z, Xu J, Lu E, He W, Deng S, Gong A-Y, Strass-Soukup J, Martins GA, Lu G, Chen X-M. 2021. m6A mRNA methylation regulates epithelial innate antimicrobial defense against cryptosporidial infection. Frontiers in Immunology, 12, 705232. [CrossRef] [PubMed] [Google Scholar]
  187. Xiang Q, Li M, Wen J, Ren F, Yang Z, Jiang X, Chen Y. 2022. The bioactivity and applications of pomegranate peel extract: a review. Journal of Food Biochemistry, 46, e14105. [CrossRef] [PubMed] [Google Scholar]
  188. Xie F, Zhang Y, Li J, Sun L, Zhang L, Qi M, Zhang S, Jian F, Li X, Li X, Ning C, Wang R. 2022. MiR-942–5p targeting the IFI27 gene regulates HCT-8 cell apoptosis via a TRAIL-dependent pathway during the early phase of Cryptosporidium parvum infection. Parasites & Vectors, 15, 291. [CrossRef] [PubMed] [Google Scholar]
  189. Xu QM, Fang F, Wu SH, Shi ZQ, Liu Z, Zhoa YJ, Zheng HW, Lu GX, Kong HR, Wang GJ, Ai L, Chen MX, Chen JX. 2021. Dendritic cell TLR4 induces Th1-type immune response against Cryptosporidium parvum infection. Tropical Biomedicine, 38, 172–179. [CrossRef] [PubMed] [Google Scholar]
  190. Yahia SH, El Gamal RL, Fathy GM, Al-Ghandour AMF, El-Akabawy N, Abdel-Hameed BH, Elbahaie ES. 2023. The potential therapeutic effect of Nigella sativa and Zingiber officinale extracts versus nitazoxanide drug against experimentally induced cryptosporidiosis in laboratory mice. Journal of Parasitic Diseases, 47, 329–339. [CrossRef] [PubMed] [Google Scholar]
  191. Yamanouchi K, Ishimaru T, Kakuno T, Takemoto Y, Kawatsu S, Kondo K, Maruyama M, Higaki K. 2023. Improvement and characterization of oral absorption behavior of clofazimine by SNEDDS: Quantitative evaluation of extensive lymphatic transport. European Journal of Pharmaceutics and Biopharmaceutics, 187, 141–155. [CrossRef] [PubMed] [Google Scholar]
  192. Yang Z, Fu Y, Gong P, Zheng J, Liu L, Yu Y, Li J, Li H, Yang J, Zhang X. 2015. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells. Microbial Pathogenesis, 85, 29–34. [CrossRef] [PubMed] [Google Scholar]
  193. Yang H, Zhang M, Wang X, Gong P, Zhang N, Zhang X, Li X, Li J. 2023. Cryptosporidium parvum maintains intracellular survival by activating the host cellular EGFR-PI3K/Akt signaling pathway. Molecular Immunology, 154, 69–79. [CrossRef] [PubMed] [Google Scholar]
  194. Yao Q, Fan Y-Y, Huang S, Hu G-R, Song J-K, Yang X, Zhao G-H. 2024. MiR-4521 affects the propagation of Cryptosporidium parvum in HCT-8 cells through targeting foxm1 by regulating cell apoptosis. Acta Tropica, 249, 107057. [CrossRef] [PubMed] [Google Scholar]
  195. Yin Y-L, Liu T-L, Yao Q, Wang Y-X, Wu X-M, Wang X-T, Yang X, Song J-K, Zhao G-H. 2021. Circular RNA ciRS-7 affects the propagation of Cryptosporidium parvum in HCT-8 cells by sponging miR-1270 to activate the NF-κB signaling pathway. Parasites & Vectors, 14, 238. [CrossRef] [PubMed] [Google Scholar]
  196. Yin J, Shen Y, Cao J. 2022. Burden of Cryptosporidium infections in the Yangtze River delta in China in the 21st century: a one health perspective. Zoonoses, 2, 993. [Google Scholar]
  197. Yoder JS, Beach MJ. 2010. Cryptosporidium surveillance and risk factors in the United States. Experimental Parasitology, 124, 31–39. [CrossRef] [PubMed] [Google Scholar]
  198. Yoon GS, Keswani RK, Sud S, Rzeczycki PM, Murashov MD, Koehn TA, Standiford TJ, Stringer KA, Rosania GR. 2016. Clofazimine biocrystal accumulation in macrophages upregulates interleukin 1 receptor antagonist production to induce a systemic anti-inflammatory state. Antimicrobial Agents and Chemotherapy, 60, 3470–3479. [CrossRef] [PubMed] [Google Scholar]
  199. Yuthavong Y, Kamchonwongpaisan S, Leartsakulpanich U, Chitnumsub P. 2006. Folate metabolism as a source of molecular targets for antimalarials. Future Microbiology, 1, 113–125. [CrossRef] [PubMed] [Google Scholar]
  200. Zahedi A, Ryan U. 2020. Cryptosporidium - An update with an emphasis on foodborne and waterborne transmission. Research in Veterinary Science, 132, 500–512. [CrossRef] [PubMed] [Google Scholar]
  201. Zhang H, Guo F, Zhu G. 2015. Cryptosporidium lactate dehydrogenase is associated with the parasitophorous vacuole membrane and is a potential target for developing therapeutics. PLoS Pathogens, 11, e1005250. [CrossRef] [PubMed] [Google Scholar]
  202. Zhang G, Huang K, Chen F, Wang J. 2009. Inhibitory effect of matrine on infection of Cryptosporidium parvum both in vivo and in vitro. Animal Husbandry & Veterinary Medicine, 41, 67–69. [Google Scholar]
  203. Zhang CX, Love MS, McNamara CW, Chi V, Woods AK, Joseph S, Schaefer DA, Betzer DP, Riggs MW, Iroh Tam P-Y, Van Voorhis WC, Arnold SLM. 2022. Pharmacokinetics and pharmacodynamics of clofazimine for treatment of cryptosporidiosis. Antimicrobial Agents and Chemotherapy, 66, e0156021. [CrossRef] [PubMed] [Google Scholar]
  204. Zhang M, Shen Y. 2018. Research progress on clinical pharmacological action of anti-hepatitis B Virus of matrine-type alkaloids. Anti-Infection Pharmacy, 15, 1–6. [Google Scholar]
  205. Zhang M, Shen Y. 2018. Research advances on clinical pharmacological action of anti-inflammatory agent and immunosuppressant of matrine. Anti-Infection Pharmacy, 15, 737–743. [Google Scholar]
  206. Zhang Y, Yan R, Hu Y. 2015. Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Canadian Journal of Physiology and Pharmacology, 93, 253–260. [CrossRef] [PubMed] [Google Scholar]
  207. Zhang J, Yao Q, Liu Z. 2017. A novel synthesis of the efficient anti-coccidial drug halofuginone hydrobromide. Molecules, 22, 1086. [CrossRef] [PubMed] [Google Scholar]
  208. Zhang G, Zhang Y, Niu Z, Wang C, Xie F, Li J, Zhang S, Qi M, Jian F, Ning C, Zhang L, Wang R. 2020. Cryptosporidium parvum upregulates miR-942–5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling. Parasites & Vectors, 13, 435. [CrossRef] [PubMed] [Google Scholar]
  209. Zhao N, Zhang X. 2010. Advances in the study of Nitazoxanide. Journal of Pathogen Biology, 5, 146–148+152. [Google Scholar]
  210. Zhou R, Gong A-Y, Chen D, Miller RE, Eischeid AN, Chen X-M. 2013. Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PloS One, 8, e65153. [CrossRef] [PubMed] [Google Scholar]
  211. Zhou R, Hu G, Liu J, Gong A-Y, Drescher KM, Chen X-M. 2009. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathogens, 5, e1000681. [CrossRef] [PubMed] [Google Scholar]
  212. Zhou R, O’Hara SP, Chen X-M. 2011. MicroRNA regulation of innate immune responses in epithelial cells. Cellular & Molecular Immunology, 8, 371–379. [CrossRef] [PubMed] [Google Scholar]
  213. Zou Z, Tong F, Faergeman NJ, Børsting C, Black PN, DiRusso CC. 2003. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex. Journal of Biological Chemistry, 278, 16414–16422. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.