Open Access
Issue |
Parasite
Volume 31, 2024
|
|
---|---|---|
Article Number | 63 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/parasite/2024064 | |
Published online | 08 October 2024 |
- Amin OM. 1985. Classification, in Biology of the Acanthocephala. Crompton DWT, Editor Cambridge University Press: Cambridge. p. 27–72. [Google Scholar]
- Amin OM. 1987. Key to the families and subfamilies of Acanthocephala, with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthorhynchida). Journal of Parasitology, 73, 1216–1219. [CrossRef] [Google Scholar]
- Amin OM. 2013. Classification of the Acanthocephala. Folia Parasitologica, 60, 273–305. [CrossRef] [PubMed] [Google Scholar]
- Amin OM, Heckmann RA, Dallarés S, Constenla M, Yu Rubtsova N, Kuzmina T. 2021. New perspectives on Aspersentis megarhynchus (Acanthocephala: Heteracanthocephalidae) from Notothenia coriiceps Richardson (Nototheniidae) in the West Antarctic, with emended generic diagnosis. Journal of Helminthology, 95, e27. [CrossRef] [PubMed] [Google Scholar]
- Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M. 2007. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics (Oxford, England), 23, 2957–2958. [PubMed] [Google Scholar]
- Braicovich PE, Lanfranchi AL, Farber MD, Marvaldi AE, Luque JL, Timi JT. 2014. Genetic and morphological evidence reveals the existence of a new family, genus and species of Echinorhynchida (Acanthocephala). Folia Parasitologica, 61, 377–384. [CrossRef] [PubMed] [Google Scholar]
- Chen H-X, Yu Z-J, Ma J, Zhao C-H, Cao F-Q, Li L. 2024. Morphology, genetic characterization and phylogeny of Moniliformis tupaia n. sp. (Acanthocephala: Moniliformidae) from the northern tree shrew Tupaia belangeri chinensis Anderson (Mammalia: Scandentia). Parasitology, 151, 440–448. [CrossRef] [PubMed] [Google Scholar]
- Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics (Oxford, England), 25, 1422–1423. [PubMed] [Google Scholar]
- Dai GD, Yan HB, Li L, Zhang LS, Liu ZL, Gao SZ, Ohiolei JA, Wu YD, Guo AM, Fu BQ, Jia WZ. 2022. Molecular characterization of a new Moniliformis sp. from a Plateau Zokor (Eospalax fontanierii baileyi) in China. Frontiers in Microbiology, 13, 806–882. [Google Scholar]
- Gao JW, Yuan XP, Wu H, Xiang CY, Xie M, Song R, Chen ZY, Wu YA, Ou DS. 2022. Mitochondrial phylogenomics of Acanthocephala: nucleotide alignments produce long-branch attraction artefacts. Parasites & Vectors, 15, 376. [CrossRef] [PubMed] [Google Scholar]
- Gao JW, Yuan XP, Jakovlic I, Wu H, Xiang CY, Xie M, Song R, Xie ZG, Wu YA, Ou DS. 2023. The mitochondrial genome of Heterosentis pseudobagri (Wang & Zhang, 1987) Pichelin & Cribb, 1999 reveals novel aspects of tRNA genes evolution in Acanthocephala. BMC Genomics, 24, 95. [CrossRef] [PubMed] [Google Scholar]
- García-Varela M, Nadler SA. 2006. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution, 40, 61–72. [CrossRef] [PubMed] [Google Scholar]
- García-Varela M, Andrade-Gómez L. 2021. First steps to understand the systematics of Echinorhynchidae Cobbold, 1876 (Acanthocephala), inferred through nuclear gene sequences. Parasitology International, 81, 102–264. [Google Scholar]
- García-Gallego A, Raga JA, Fraija-Fernández N, Aznar FJ. 2023. Temporal and geographical changes in the intestinal helminth fauna of striped dolphins, Stenella coeruleoalba, in the western Mediterranean: a long-term analysis (1982–2016). Frontiers in Marine Science, 10, 1–17. [Google Scholar]
- Garey JR, Near TJ, Nonnemacher MR, Nadler SA. 1996. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. Journal of Molecular Evolution, 43, 287–292. [CrossRef] [PubMed] [Google Scholar]
- Gazi M, Sultana T, Min GS, Park YC, García-Varela M, Nadler SA, Park JK. 2012. The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. Parasitology International, 61, 307–316. [CrossRef] [PubMed] [Google Scholar]
- Gazi M, Kim J, Park JK. 2015. The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida). Parasitology International, 64, 64–68. [CrossRef] [PubMed] [Google Scholar]
- Gazi M, Kim J, García-Varela M, Park C, Littlewood DTJ, Park J-K. 2016. Mitogenomic phylogeny of Acanthocephala reveals novel Class relationships. Zoologica Scripta, 45, 437–454. [CrossRef] [Google Scholar]
- Gissi C, Iannelli F, Pesole G. 2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301–320. [CrossRef] [PubMed] [Google Scholar]
- Golombek A, Tobergte S, Struck TH. 2015. Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes). Molecular Phylogenetics and Evolution, 86, 49–63. [CrossRef] [PubMed] [Google Scholar]
- Golvan YJ. 1960. Le Phylum des Acanthocephala. Troisième note. La Classe des Palaeacanthocephala (Meyer, 1931) (à suivre). Annales de Parasitologie Humaine et Comparée, 35, 138–165. [CrossRef] [EDP Sciences] [Google Scholar]
- Golvan YJ. 1969. Systématique des acanthocéphales (Acanthocephala Rudolphi 1801) Première Partie. L’Ordre des Palæacanthocephala Meyer 1931. Premier fascicule. La Superfamille des Echinorhynchoidea (Cobbold 1876) Golvan et Houin 1963. Mémoires du Muséum National d’Histoire Naturelle, Série A, Zoologie, 57, 1–373. [Google Scholar]
- Gruber AR, Bernhart SH, Lorenz R. 2015. The ViennaRNA web services. Methods in Molecular Biology, 1269, 307–326. [CrossRef] [PubMed] [Google Scholar]
- Hoang DT, Chernomor O, Von Haeseler A, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. [CrossRef] [PubMed] [Google Scholar]
- Huston DC, Smales LR. 2020. Proposal of Spinulacorpus biforme (Smales, 2014) n. g., n. comb. and the Spinulacorpidae n. fam. to resolve paraphyly of the acanthocephalan family Rhadinorhynchidae Lühe, 1912. Systematic Parasitology, 97, 477–490. [CrossRef] [PubMed] [Google Scholar]
- Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 241. [CrossRef] [PubMed] [Google Scholar]
- Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. [CrossRef] [PubMed] [Google Scholar]
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. [CrossRef] [Google Scholar]
- Králová-Hromadová I, Scholz T, Shinn AP, Cunningham CO, Wootten R, Hanzelová V, Sommerville C. 2003. A molecular study of Eubothrium rugosum (Batsch, 1786) (Cestoda: Pseudophyllidea) using ITS rDNA sequences, with notes on the distribution and intraspecific sequence variation of Eubothrium crassum (Bloch, 1779). Parasitology International, 89, 473–479. [CrossRef] [PubMed] [Google Scholar]
- Kuzmina TA, Salganskij OO, Lisitsyna OI, Korol EM. 2020. Helminths of Antarctic Rockcod Notothenia coriiceps (Perciformes, Nototheniidae) from the Akademik Vernadsky Station Area (Argentine Islands, West Antarctica): new data on the parasite community. Zoodiversity, 54, 99–110. [CrossRef] [Google Scholar]
- Laskowski Z, Zdzitowiecki K. 2004. New morphological data on a sub-Antarctic acanthocephalan, Aspersentis johni (Baylis, 1929) (Palaeacanthocephala: Heteracanthocephalidae). Systematic Parasitology, 59, 39–44. [CrossRef] [PubMed] [Google Scholar]
- Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, 293–296. [Google Scholar]
- Li D-X, Yang R-J, Chen H-X, Kuzmina TA, Spraker TR, Li L. 2024. Characterization of the complete mitochondrial genomes of the zoonotic parasites Bolbosoma nipponicum and Corynosoma villosum (Acanthocephala: Polymorphida) and the molecular phylogeny of the order Polymorphida. Parasitology, 151, 45–57. [CrossRef] [PubMed] [Google Scholar]
- Li L, Chen H-X, Amin OM, Yang Y. 2017. Morphological variability and molecular characterization of Pomphorhynchus zhoushanensis sp. nov. (Acanthocephala: Pomphorhynchidae), with comments on the systematic status of Pomphorhynchus monticelli, 1905. Parasitology International, 66, 693–698. [CrossRef] [PubMed] [Google Scholar]
- Li L, Wayland MT, Chen H-X, Yang Y. 2019. Remarkable morphological variation in the proboscis of Neorhadinorhynchus nudus (Harada, 1938) (Acanthocephala: Echinorhynchida). Parasitology, 146, 348–355. [CrossRef] [PubMed] [Google Scholar]
- Meng G, Li Y, Yang C, Liu S. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47, e63. [CrossRef] [PubMed] [Google Scholar]
- Min GS, Park JK. 2009. Eurotatorian paraphyly: revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera: Syndermata). BMC Genomics, 10, 533. [CrossRef] [PubMed] [Google Scholar]
- Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. [CrossRef] [PubMed] [Google Scholar]
- Muhammad N, Suleman Ma J, Khan MS, Li L, Zhao Q, Ahmad MS, Zhu XQ. 2019. Characterization of the complete mitochondrial genome of Sphaerirostris picae (Rudolphi, 1819) (Acanthocephala: Centrorhynchidae), representative of the genus Sphaerirostris. Parasitology Research, 118, 2213–2221. [CrossRef] [PubMed] [Google Scholar]
- Muhammad N, Ma J, Khan MS, Wu SS, Zhu XQ, Li L. 2019. Characterization of the complete mitochondrial genome of Centrorhynchus milvus (Acanthocephala: Polymorphida) and its phylogenetic implications. Infection, Genetics and Evolution, 75, 103–946. [Google Scholar]
- Muhammad N, Li L, Suleman Zhao Q, Bannai MA, Mohammad ET, Khan MS, Zhu XQ, Ma J. 2020. Characterization of the complete mitochondrial genome of Cavisoma magnum (Acanthocephala: Palaeacanthocephala), first representative of the family Cavisomidae, and its phylogenetic implications. Infection, Genetics and Evolution, 80, 104–173. [Google Scholar]
- Muhammad N, Suleman Ahmad MS, Li L, Zhao Q, Ullah H, Zhu XQ, Ma J. 2020. Mitochondrial DNA dataset suggest that the genus Sphaerirostris Golvan, 1956 is a synonym of the genus Centrorhynchus Lühe, 1911. Parasitology, 147, 1149–1157. [CrossRef] [PubMed] [Google Scholar]
- Muhammad N, Suleman Khan MS, Li L, Zhao Q, Ullah H, Zhu XQ, Ma J. 2020. Characterization of the complete mitogenome of Centrorhynchus clitorideus (Meyer, 1931) (Palaeacanthocephala: Centrorhynchidae), the largest mitochondrial genome in Acanthocephala, and its phylogenetic implications. Molecular and Biochemical Parasitology, 237, 111–274. [Google Scholar]
- Muhammad N, Li DX, Ru SS, Suleman Saood D, Alvi MA, Li L. 2023. Characterization of the complete mitochondrial genome of Acanthogyrus (Acanthosentis) bilaspurensis Chowhan, Gupta & Khera, 1987 (Eoacanthocephala: Quadrigyridae), the smallest mitochondrial genome in Acanthocephala, and its phylogenetic implications. Journal of Helminthology, 97, e87. [CrossRef] [PubMed] [Google Scholar]
- Nickol BB. 1985. Epizootiology, in Biology of the Acanthocephala. Crompton DWT, Nickol BB, Editors. Cambridge University Press: Cambridge. p. 307–346. [Google Scholar]
- Pan TS, Jiang H. 2018. The complete mitochondrial genome of Hebesoma violentum (Acanthocephala). Mitochondrial DNA Part B, 3, 582–583. [CrossRef] [Google Scholar]
- Pan TS, Nie P. 2013. The complete mitochondrial genome of Pallisentis celatus (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers. Folia Parasitologica, 60, 181–191. [CrossRef] [PubMed] [Google Scholar]
- Perrot-Minnot MJ, Cozzarolo CS, Amin O, Barčák D, Bauer A, Filipović Marijić V, García-Varela M, Servando Hernández-Orts J, Yen Le TT, Nachev M, Orosová M, Rigaud T, Šariri S, Wattier R, Reyda F, Sures B. 2023. Hooking the scientific community on thorny-headed worms: interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala. Parasite, 30, 23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Petrochenko VI. 1956. Acanthocephala of domestic and wild animals. Moscow: Izdatelstvo Akademii Nauk SSSR. p. 435 (Vol. Vol. 1) [Google Scholar]
- Pichelin S, Cribb TH. 2001. The status of the Diplosentidae (Acanthocephala: Paleacanthocephala) and a new family of acanthocephalans from Australian wrasses (Pisces: Labridae). Folia Parasitologica, 48, 208–303. [Google Scholar]
- Pichelin S, Smales L, Bray RA. 2002. A discussion on the Heteracanthocephalidae Petrochenko, 1956 (Acanthocephala: Palaeacanthocephala). Systematic Parasitology, 52, 145–152. [CrossRef] [PubMed] [Google Scholar]
- Reuter JS, Mathews DH. 2010. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129. [CrossRef] [PubMed] [Google Scholar]
- Sarwar H, Zhao WT, Kibet CJ, Sitko J, Nie P. 2021. Morphological and complete mitogenomic characterisation of the acanthocephalan Polymorphus minutus infecting the duck Anas platyrhynchos. Folia Parasitologica, 68, e015. [CrossRef] [Google Scholar]
- Smales LR. 1996. A redescription of Aspersentis zanclorhynchi (Johnston and Best, 1937) comb. nov. (Heteracanthocephalidae: Acanthocephala). Transactions of the Royal Society of South Australia, 120, 167–171. [Google Scholar]
- Smales LR. 2012. A new acanthocephalan family, the Isthmosacanthidae (Acanthocephala: Echinorhynchida), with the description of Isthmosacanthus fitzroyensis n. g., n. sp. from threadfin fishes (Polynemidae) of northern Australia. Systematic Parasitology, 82, 105–111. [CrossRef] [PubMed] [Google Scholar]
- Song R, Zhang D, Deng S, Ding D, Liao F, Liu L. 2016. The complete mitochondrial genome of Acanthosentis cheni (Acanthocephala: Quadrigyridae). Mitochondrial DNA Part B, 1, 797–798. [CrossRef] [Google Scholar]
- Song R, Zhang D, Gao JW, Cheng XF, Xie M, Li H, Wu YA. 2019. Characterization of the complete mitochondrial genome of Brentisentis yangtzensis Yu and Wu, 1989 (Acanthocephala, Illiosentidae). ZooKeys, 861, 1–14. [CrossRef] [PubMed] [Google Scholar]
- Steinauer ML, Nickol BB, Broughton R, Ortí G. 2005. First sequenced mitochondrial genome from the phylum Acanthocephala (Leptorhynchoides thecatus) and its phylogenetic position within Metazoa. Journal of Molecular Evolution, 60, 706–715. [CrossRef] [PubMed] [Google Scholar]
- Van Cleave HJ. 1929. A new genus and new species of Acanthocephala from the Antarctic. Annals and Magazine of Natural History, 4, 229–331. [CrossRef] [Google Scholar]
- Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugar L, Herlyn H, Hankeln T. 2013. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Molecular Phylogenetics and Evolution, 66, 182–189. [CrossRef] [PubMed] [Google Scholar]
- Yamaguti S. 1963. Systema Helminthum. Volume V: Acanthocephala. New York, NY: Interscience Publisher Inc.. p. 422 p. [Google Scholar]
- Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355. [CrossRef] [PubMed] [Google Scholar]
- Zhao TY, Yang RJ, Lu L, Ru SS, Wayland MT, Chen HX, Li YH, Li L. 2023. Phylomitogenomic analyses provided further evidence for the resurrection of the family Pseudoacanthocephalidae (Acanthocephala: Echinorhynchida). Animals, 13, 1256. [CrossRef] [PubMed] [Google Scholar]
- Zhang ZQ. 2011. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 6395. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.