Open Access
Research Article
Issue
Parasite
Volume 27, 2020
Article Number 46
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2020043
Published online 20 July 2020
  1. Ahmed HA, Picozzi K, Welburn SC, MacLeod ET. 2013. A comparative evaluation of PCR-based methods for species-specific determination of African animal trypanosomes in Ugandan cattle. Parasites & Vectors, 6(1), 316. [CrossRef] [PubMed] [Google Scholar]
  2. Alibu VP, John CK, Matovu E, Malele II, Chisi JE, Mbongo N, Mansinsa P, Intisar ER, Mohammed Y, Abdelrahman MM, Ochi EB, Lukaw YS. 2015. Molecular xenomonitoring of trypanosomes in tsetse flies. Journal of Parasitology and Vector Biology, 7(6), 108–114. [Google Scholar]
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. [CrossRef] [PubMed] [Google Scholar]
  4. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O’grady J.. 2014. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nature Biotechnology, 33(3), 296–300. [CrossRef] [PubMed] [Google Scholar]
  5. Auty HK, Picozzi K, Malele I, Torr SJ, Cleaveland S, Welburn S. 2012. Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania. PLoS Neglected Tropical Diseases, 6(1), e1501. [CrossRef] [PubMed] [Google Scholar]
  6. Bekele EE, Begejo B. 2015. The current situation and diagnostic approach of Nagana in Africa: a review. Journal of Natural Sciences Research, 5(17), 117–125. [Google Scholar]
  7. Brun R, Blum J, Chappuis F, Burri C. 2010. Human African trypanosomiasis. Lancet, 375(9709), 148–159. [CrossRef] [PubMed] [Google Scholar]
  8. Büscher P, Cecchi G, Jamonneau V, Priotto G. 2017. Human African trypanosomiasis. Lancet, 390(10110), 2397–2409. [CrossRef] [PubMed] [Google Scholar]
  9. Chainey JE, Oldroyd H. 1980. Family Tabanidae. pp. 275–308, in Catalogue of the Diptera of the Afrotropical Region, Crosskey R.W., Editor. British Museum (Natural History): London. 1437 p. [Google Scholar]
  10. Chintsanya NC, Chinombo DO, Gondwe TN, Wanda G, Mwenda AR, Banda MC, Hami JC. 2004. Management of farm animal genetic resources in the Sadc Region-Malawi. Available from: http://www.fao.org/tempref/docrep/fao/011/a1250f/annexes/CountryReports/Malawi.pdf. [Google Scholar]
  11. Chisi JE, Muula AS, Ngwira B, Kabuluzi S. 2011a. A retrospective study of human African Trypanosomiasis in three Malawian districts. Tanzania Journal of Health Research, 13(1), 62–68. [Google Scholar]
  12. Chisi J, Nkhoma A, Sternberg J. 2011b. Presentation of Trypanosomiasis in Nkhotakota. Malawi Medical Journal, 19(4), 140–141. [Google Scholar]
  13. Connor RJ. 1994. The impact of nagana. Onderstepoort Journal of Veterinary Research, 61, 379–383. [Google Scholar]
  14. Cuypers B, Van den Broeck F, Van Reet N, Meehan CJ, Cauchard J, Wilkes JM, Claes F, Goddeeris B, Birhanu H, Dujardin JC, Laukens K. 2017. Genome-wide SNP analysis reveals distinct origins of Trypanosoma evansi and Trypanosoma equiperdum. Genome Biology and Evolution, 9(8), 1990–1997. [CrossRef] [PubMed] [Google Scholar]
  15. Fiennes RN. 1954. Haematological studies in trypanosomiasis of cattle. Veterinary Record, 66(30), 423–434. [Google Scholar]
  16. Fiennes RN. 1970. Pathogenesis and pathology of animal trypanosomiasis, in The African Trypanosomiasis, Mulligan HW, Editor. Allen and Unwin: London. pp. 729–750. [Google Scholar]
  17. Franco JR, Simarro PP, Diarra A, Jannin JG. 2014. Epidemiology of human African trypanosomiasis. Clinical Epidemiology, 6, 257. [PubMed] [Google Scholar]
  18. Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, Mattioli RC, Argaw D. 2017. Monitoring the elimination of human African trypanosomiasis: update to 2014. PLoS Neglected Tropical Diseases, 11(5), e0005585. [CrossRef] [PubMed] [Google Scholar]
  19. Gaithuma AK, Yamagishi J, Martinelli A, Hayashida K, Kawai N, Marsela M, Sugimoto C. 2019. A single test approach for accurate and sensitive detection and taxonomic characterization of trypanosomes by comprehensive analysis of internal transcribed spacer 1 amplicons. PLoS Neglected Tropical Diseases, 13(2), e0006842. [CrossRef] [PubMed] [Google Scholar]
  20. Gondwe N, Marcotty T, Vanwambeke SO, De Pus C, Mulumba M, Van den Bossche P. 2009. Distribution and density of tsetse flies (Glossinidae: Diptera) at the game/people/livestock interface of the Nkhotakota Game Reserve human sleeping sickness focus in Malawi. EcoHealth, 6(2), 260–265. [CrossRef] [PubMed] [Google Scholar]
  21. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R. 2015. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Medicine, 7(1), 99. [CrossRef] [PubMed] [Google Scholar]
  22. Hopkins JS, Chitambo H, Machila N, Luckins AG, Rae PF, van den Bossche P, Eisler MC. 1998. Adaptation and validation of antibody-ELISA using dried blood spots on filter paper for epidemiological surveys of tsetse-transmitted trypanosomosis in cattle. Preventive Veterinary Medicine, 37(1–4), 91–99. [CrossRef] [PubMed] [Google Scholar]
  23. Jali K. 2019. Trypanosomiasis (African) – Malawi (02): (Nkhotakota Wildlife Reserve). ProMed. 01 Nov: 20191101.6757106. http://www.promedmail.org. Accessed 2 November 2019. [Google Scholar]
  24. Ježek J, Votýpka J, Brzoňová J, Oboňa J. 2019. Horse flies (Diptera: Tabanidae) collected in Central African Republic, Gabon and Liberia with comments on their updated distribution. Acta Musei Silesiae, Scientiae Naturales, 68(3), 263–274. [CrossRef] [Google Scholar]
  25. Kaare MT, Picozzi K, Mlengeya T, Fèvre EM, Mellau LS, Mtambo MM, Cleaveland S, Welburn SC. 2007. Sleeping sickness-A re-emerging disease in the Serengeti? Travel Medicine and Infectious Disease, 5(2), 117–124. [CrossRef] [PubMed] [Google Scholar]
  26. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. 2011. Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487–493. [CrossRef] [PubMed] [Google Scholar]
  27. Kuriakose SM, Onyilagha C, Singh R, Jia P, Uzonna JE. 2019. Diminazene aceturate (Berenil) downregulates Trypanosoma congolense-induced proinflammatory cytokine production by altering phosphorylation of MAPK and STAT proteins. Immunologic Research, 67(1), 84–92. [CrossRef] [PubMed] [Google Scholar]
  28. Loman NJ, Watson M. 2015. Successful test launch for nanopore sequencing. Nature Methods, 12, 303–304. [CrossRef] [PubMed] [Google Scholar]
  29. MacLean LM, Odiit M, Chisi JE, Kennedy PG, Sternberg JM. 2010. Focus specific clinical profiles in human African trypanosomiasis caused by Trypanosoma brucei rhodesiense. PLoS Neglected Tropical Diseases, 4(12), e906. [CrossRef] [PubMed] [Google Scholar]
  30. Madanitsa M, Chisi J, Ngwira B. 2009. The epidemiology of trypanosomiasis in Rumphi district, Malawi: a ten year retrospective study. Malawi Medical Journal, 21(1), 22–27. [CrossRef] [Google Scholar]
  31. Majekodunmi AO, Fajinmi A, Dongkum C, Picozzi K, MacLeod E, Thrusfield MV, Shaw AP, Welburn SC. 2013. Social factors affecting seasonal variation in bovine trypanosomiasis on the Jos Plateau, Nigeria. Parasites & Vectors, 6(1), 293. [CrossRef] [PubMed] [Google Scholar]
  32. Mamabolo MV, Ntantiso L, Latif A, Majiwa PA. 2009. Natural infection of cattle and tsetse flies in South Africa with two genotypic groups of Trypanosoma congolense. Parasitology, 136(4), 425–431. [CrossRef] [PubMed] [Google Scholar]
  33. Mamoudou A, Payne VK, Sevidzem SL. 2015. Hematocrit alterations and its effects in naturally infected indigenous cattle breeds due to Trypanosoma spp. on the Adamawa Plateau-Cameroon. Veterinary World, 8(6), 813. [CrossRef] [PubMed] [Google Scholar]
  34. Masiga DK, Smyth AJ, Hayes P, Bromidge TJ, Gibson WC. 1992. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal for Parasitology, 22(7), 909–918. [CrossRef] [PubMed] [Google Scholar]
  35. Meyer A, Holt HR, Selby R, Guitian J. 2016. Past and ongoing tsetse and animal trypanosomiasis control operations in five African countries: a systematic review. PLoS Neglected Tropical Diseases, 10(12), e0005247. [CrossRef] [PubMed] [Google Scholar]
  36. Mongan AE, Tuda JS, Runtuwene LR. 2020. Portable sequencer in the fight against infectious disease. Journal of Human Genetics, 65, 35–40. [CrossRef] [PubMed] [Google Scholar]
  37. Mulligan HW, Porrs W. 1970. The African trypanosomiases. New York: Wiley-Interscience. 325 p. [Google Scholar]
  38. Musaya J, Chisi J, Senga E, Nambala P, Maganga E, Matovu E, Enyaru J. 2017. Polymerase chain reaction identification of Trypanosoma brucei rhodesiense in wild tsetse flies from Nkhotakota Wildlife Reserve, Malawi. Malawi Medical Journal, 29(1), 11–15. [CrossRef] [Google Scholar]
  39. Mwai O, Hanotte O, Kwon YJ, Cho S. 2015. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian-Australasian Journal of Animal Sciences, 28(7), 911. [CrossRef] [PubMed] [Google Scholar]
  40. Nambala P, Musaya J, Hayashida K, Maganga E, Senga E, Kamoto K, Chisi J, Sugimoto C. 2018. Comparative evaluation of dry and liquid RIME LAMP in detecting trypanosomes in dead tsetse flies. Onderstepoort Journal of Veterinary Research, 85(1), 1–6. [CrossRef] [Google Scholar]
  41. Ng’ayo MO, Njiru ZK, Kenya EU, Muluvi GM, Osir EO, Masiga DK. 2005. Detection of trypanosomes in small ruminants and pigs in western Kenya: important reservoirs in the epidemiology of sleeping sickness? Kinetoplastid Biology and Disease, 4(1), 5. [CrossRef] [PubMed] [Google Scholar]
  42. Ngonyoka A, Gwakisa PS, Estes AB, Salekwa LP, Nnko HJ, Hudson PJ, Cattadori IM. 2017. Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania. Infectious Diseases of Poverty, 6(1), 126. [CrossRef] [PubMed] [Google Scholar]
  43. Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RC, Dávila AM. 2005. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitology Research, 95(3), 186–192. [CrossRef] [PubMed] [Google Scholar]
  44. Osório AL, Madruga CR, Desquesnes M, Soares CO, Ribeiro LR, Costa SC. 2008. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the New World – a review. Memórias do Instituto Oswaldo Cruz, 103(1), 1–13. [CrossRef] [Google Scholar]
  45. QGIS Development Team. 2020. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. [Google Scholar]
  46. Quick J, Quinlan AR, Loman NJ. 2014. A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. Gigascience, 3, 1–6. [CrossRef] [PubMed] [Google Scholar]
  47. Radwanska M, Chamekh M, Vanhamme LU, Claes F, Magez S, Magnus E, De Baetselier P, Büscher P, Pays E. 2002. The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. American Journal of Tropical Medicine and Hygiene, 67(6), 684–690. [CrossRef] [Google Scholar]
  48. Schmidt RH. 1969. Cattle in Malawi’s Southern region. Society of Malawi Journal, 22, 57–72. [Google Scholar]
  49. Sloof P, Menke HH, Caspers MP, Borst P. 1983. Size fractionation of Trypanosoma brucei DNA: localization of the 177-bp repeat satellite DNA and a variant surface glycoprotein gene in a mini-chromosomal DNA fraction. Nucleic Acids Research, 11(12), 3889–3901. [CrossRef] [PubMed] [Google Scholar]
  50. Spickler AR. 2018. African Animal Trypanosomiasis. Retrieved from: http://www.cfsph.iastate.edu/Factsheets/pdfs/trypanosomiasis_african.pdf. [Google Scholar]
  51. Squarre D, Hayashida K, Gaithuma A, Chambaro H, Kawai N, Moonga L, Namangala B, Sugimoto C, Yamagishi J. 2020. Diversity of trypanosomes in wildlife of the Kafue ecosystem, Zambia. International Journal for Parasitology: Parasites and Wildlife, 12, 34–41. [CrossRef] [Google Scholar]
  52. Steverding D. 2008. The history of African trypanosomiasis. Parasites & Vectors, 1(1), 3. [CrossRef] [PubMed] [Google Scholar]
  53. Sugano S, Yamagishi J, Mongan AE, Tuda J, Suzuki Y. 2015. Genomics on site of detection of malaria. Annals of Translational Medicine, 3(S2), AB005. [Google Scholar]
  54. Tasew S, Duguma R. 2012. Cattle anaemia and trypanosomiasis in western Oromia State, Ethiopia. Revue de Médecine Véterinaire, 163(12), 581–588. [Google Scholar]
  55. Trail JC, d’Ieteren GD, Feron A, Kakiese O, Mulungo M, Pelo M. 1990. Effect of trypanosome infection, control of parasitaemia and control of anaemia development on productivity of N’Dama cattle. Acta Tropica, 48(1), 37–45. [CrossRef] [PubMed] [Google Scholar]
  56. Trail JC, d’Ieteren GD, Murray M, Ordner G, Yangari G, Collardelle C, Sauveroche B, Maille JC, Viviani P. 1993. Measurement of trypanotolerance criteria and their effect on reproductive performance of N’Dama cattle. Veterinary Parasitology, 45(3–4), 241–255. [CrossRef] [PubMed] [Google Scholar]
  57. Van den Bossche PR, Rowlands GJ. 2001. The relationship between the parasitological prevalence of trypanosomal infections in cattle and herd average packed cell volume. Acta Tropica, 78(2), 163–170. [CrossRef] [PubMed] [Google Scholar]
  58. Van den Bossche P, Shumba W, Makhambera P. 2000. The distribution and epidemiology of bovine trypanosomosis in Malawi. Veterinary Parasitology, 88(3–4), 163–176. [CrossRef] [PubMed] [Google Scholar]
  59. Von Wissmann B, Machila N, Picozzi K, Fèvre EM, Barend M, Handel IG, Welburn SC. 2011. Factors associated with acquisition of human infective and animal infective trypanosome infections in domestic livestock in western Kenya. PLoS Neglected Tropical Diseases, 5(1), e941. [CrossRef] [PubMed] [Google Scholar]
  60. Von Wissmann B, Fyfe J, Picozzi K, Hamill L, Waiswa C, Welburn SC. 2014. Quantifying the association between bovine and human trypanosomiasis in newly affected sleeping sickness areas of Uganda. PLoS Neglected Tropical Diseases, 8(6), e2931. [CrossRef] [PubMed] [Google Scholar]
  61. Waiswa C, Olaho-Mukani W, Katunguka-Rwakishaya E. 2003. Domestic animals as reservoirs for sleeping sickness in three endemic foci in south–eastern Uganda. Annals of Tropical Medicine & Parasitology, 97(2), 149–155. [CrossRef] [Google Scholar]
  62. Welburn SC, Picozzi K, Fèvre EM, Coleman PG, Odiit M, Carrington M, Maudlin I. 2001. Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet, 358(9298), 2017–2019. [CrossRef] [PubMed] [Google Scholar]
  63. W.H.O. World Health Organization. 2013. Control and surveillance of human African trypanosomiasis report of a WHO Expert Committee WHO Technical Report Series 984. Geneva, Switzerland: World Health Organization. [Google Scholar]
  64. W.H.O. World Health Organization. 2019. Trypanosomiasis, human African (sleeping sickness). https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness). Accessed 20 October 2019. [Google Scholar]
  65. Yamagishi J, Runtuwene LR, Hayashida K, Mongan AE, Thi LA, Thuy LN, Nhat CN, Limkittikul K, Sirivichayakul C, Sathirapongsasuti N, Frith M. 2017. Serotyping dengue virus with isothermal amplification and a portable sequencer. Scientific Reports, 7(1), 1–10. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.