Open Access
Issue
Parasite
Volume 26, 2019
Article Number 29
Number of page(s) 17
DOI https://doi.org/10.1051/parasite/2019028
Published online 20 May 2019
  1. Ballinger MJ, Moore LD, Perlman SJ. 2018. Evolution and diversity of inherited Spiroplasma symbionts in Myrmica ants. Applied and Environmental Microbiology, 84, e02299–17. [PubMed] [Google Scholar]
  2. Báthori F, Csata E, Tartally A. 2015. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). Journal of Invertebrate Pathology, 126, 78–82. [CrossRef] [PubMed] [Google Scholar]
  3. Báthori F, Pfliegler WP, Radai Z, Tartally A. 2018. Host age determines parasite load of Laboulbeniales fungi infecting ants: implications for host-parasite relationship and fungal life history. Mycoscience, 59, 166–171. [Google Scholar]
  4. Báthori F, Pfliegler WP, Zimmerman C-U, Tartally A. 2017. Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. Journal of Hymenoptera Research, 61, 85–94. [CrossRef] [Google Scholar]
  5. Báthori F, Rádai Z, Tartally A. 2017. The effect of Rickia wasmannii (Ascomycota, Laboulbeniales) on the aggression and boldness of Myrmica scabrinodis (Hymenoptera, Formicidae). Journal of Hymenoptera Research, 58, 41–52. [CrossRef] [Google Scholar]
  6. Benjamin RK. 1971. Introduction and supplement to Roland Thaxter’s contribution towards a monograph of the Laboulbeniaceae. Bibliotheca Mycologica, 30, 1–155. [Google Scholar]
  7. Cammaerts M-C, Cammaerts R. 1980. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behavioural Processes, 5, 251–270. [CrossRef] [PubMed] [Google Scholar]
  8. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973. [CrossRef] [PubMed] [Google Scholar]
  9. Cavara F. 1899. Di una nuova Laboulbeniacea: Rickia wasmannii, nov. gen. et nov. spec. Malpighia, 13, 173–188. [Google Scholar]
  10. Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. [CrossRef] [PubMed] [Google Scholar]
  11. Csata E, Bernadou A, Rákosy-Tican E, Heinze J, Markó B. 2017. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. Journal of Insect Physiology, 98, 167–172. [CrossRef] [PubMed] [Google Scholar]
  12. Csata E, Erős K, Markó B. 2014. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Sociaux, 61, 247–252. [Google Scholar]
  13. Csata E, Timuş N, Witek M, Casacci LP, Lucas C, Bagnères AG, Sztencel-Jabłonka A, Barbero F, Bonelli S, Rákosy L, Markó B. 2017. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Scientific Reports, 7, 46323. [CrossRef] [PubMed] [Google Scholar]
  14. Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. [Google Scholar]
  15. De Kesel A, Haelewaters D, Dekoninck W. 2016. Myrmecophilous Laboulbeniales (Ascomycota) in Belgium. Sterbeeckia, 34, 3–6. [Google Scholar]
  16. Dinno A. 2017. conover.test: Conover-Iman test of multiple comparisons using rank sums. R package version 1.1.5. Accessed January 25, 2019. https://CRAN.R-project.org/package=conover.test [Google Scholar]
  17. Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. [CrossRef] [PubMed] [Google Scholar]
  18. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. [CrossRef] [PubMed] [Google Scholar]
  19. Egger KN. 1995. Molecular analysis of ectomycorrhizal fungal communities. Canadian Journal of Botany, 73, S1415–S1422. [CrossRef] [Google Scholar]
  20. Elmes G, Akino T, Thomas J, Clarke R, Knapp J. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia, 130, 525–535. [CrossRef] [PubMed] [Google Scholar]
  21. Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarke RT, Simcox DJ. 1998. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. Journal of Insect Conservation, 2, 67–78. [CrossRef] [Google Scholar]
  22. Enghoff H, Santamaria S. 2015. Infectious intimacy and contaminated caves – three new species of ectoparasitic fungi (Ascomycota: Laboulbeniales) from blaniulid millipedes (Diplopoda: Julida) and inferences about their transmittal mechanisms. Organisms Diversity & Evolution, 15, 249–263. [CrossRef] [Google Scholar]
  23. Espadaler X, Lebas C, Wagenknecht J, Tragust S. 2011. Laboulbenia formicarum (Ascomycota, Laboulbeniales), an exotic parasitic fungus, on an exotic ant in France. Vie & Milieu, 61, 41–44. [Google Scholar]
  24. Espadaler X, Santamaria S. 2003. Laboulbenia formicarum Thaxt. (Ascomycota, Laboulbeniales) crosses the Atlantic. Orsis, 18, 97–101. [Google Scholar]
  25. Ezard T, Fujisawa T, Barraclough TG. 2009. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-14/r31. Accessed January 23, 2019. http://RForge.R-project.org/projects/splits/. [Google Scholar]
  26. Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118. [CrossRef] [PubMed] [Google Scholar]
  27. Goldmann L, Weir A, Rossi W. 2013. Molecular analysis reveals two new dimorphic species of Hesperomyces (Ascomycota, Laboulbeniomycetes) parasitic on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae). Fungal Biology, 117, 807–813. [CrossRef] [PubMed] [Google Scholar]
  28. Gómez K, Espadaler X, Santamaria S. 2016. Ant-fungus interactions: Laboulbenia camponoti Batra in Italy and a new host for L. formicarum Thaxter (Fungi: Ascomycota, Laboulbeniales). Sociobiology, 63, 950–955. [CrossRef] [Google Scholar]
  29. Haelewaters D, Boer P, Noordijk J. 2015. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. Journal of Hymenoptera Research, 47, 39–47. [CrossRef] [Google Scholar]
  30. Haelewaters D, De Kesel A, Pfister DH. 2018. Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds. Scientific Reports, 8, 15966. [CrossRef] [PubMed] [Google Scholar]
  31. Haelewaters D, Gorczak M, Pfliegler WP, Tartally A, Tischer M, Wrzosek M, Pfister DH. 2015. Bringing the Laboulbeniales to the 21st century: enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi. IMA Fungus, 6, 363–372. [CrossRef] [PubMed] [Google Scholar]
  32. Haelewaters D, Gort G, Boer P, Noordijk J. 2015. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants (II): variation of infection by Rickia wasmannii over habitats and time. Animal Biology, 65, 219–231. [CrossRef] [Google Scholar]
  33. Haelewaters D, Page RA, Pfister DH. 2018. Laboulbeniales hyperparasites (Fungi, Ascomycota) of bat flies: independent origins and host associations. Ecology and Evolution, 8, 8396–8418. [CrossRef] [PubMed] [Google Scholar]
  34. Haelewaters D, Pfister DH. 2019. Morphological species of Gloeandromyces (Ascomycota, Laboulbeniales) evaluated using single-locus species delimitation methods. Fungal Systematics and Evolution, 3, 19–33. [CrossRef] [Google Scholar]
  35. Haelewaters D, Pfliegler WP, Gorczak M, Pfister DH. 2019. Birth of an order: comprehensive molecular phylogenetic study excludes Herpomyces (Fungi, Laboulbeniomycetes) from Laboulbeniales. Molecular Phylogenetics and Evolution, 133, 286–301. [CrossRef] [PubMed] [Google Scholar]
  36. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. [Google Scholar]
  37. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2017. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. [Google Scholar]
  38. Hopple JS Jr, Vilgalys R. 1994. Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia, 86, 96–107. [Google Scholar]
  39. Jansen G, Savolainen R, Vepsäläinen K. 2010. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 56, 294–304. [CrossRef] [PubMed] [Google Scholar]
  40. Jukes TH, Cantor CR. 1969. Evolution of protein molecules, in Mammalian protein metabolism, Munro NH, Editor. Academic Press: New York. p. 21–132. [CrossRef] [Google Scholar]
  41. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. [CrossRef] [PubMed] [Google Scholar]
  42. Krijthe JH. 2015. Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation. R package version 0.13. Accessed January 25, 2019. https://github.com/jkrijthe/Rtsne. [Google Scholar]
  43. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. [CrossRef] [PubMed] [Google Scholar]
  44. Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, 73, 331–371. [CrossRef] [PubMed] [Google Scholar]
  45. Lenth RV. 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software, 69, 1–33. [Google Scholar]
  46. Leppänen J, Vepsäläinen K, Savolainen R. 2011. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecology and Evolution, 1, 46–62. [CrossRef] [PubMed] [Google Scholar]
  47. Long JA. 2018. jtools: analysis and presentation of social scientific data. R package version 1.1.1. Accessed January 25, 2019. https://cran.r-project.org/package=jtools. [Google Scholar]
  48. Markó B, Csata E, Erős K, Német E, Czekes Z, Rózsa L. 2016. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. Journal of Invertebrate Pathology, 136, 74–80. [CrossRef] [PubMed] [Google Scholar]
  49. Michonneau F, Bolker B, Holder M, Lewis P, OMeara B. 2018. rncl: an interface to the nexus class library. R package version 0.8.3. Accessed January 25, 2019. http://CRAN.R-project.org/package=rncl. [Google Scholar]
  50. Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the gateway computing environments workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana. p. 1–8. [Google Scholar]
  51. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. [Google Scholar]
  52. Pech P, Heneberg P. 2015. Benomyl treatment decreases fecundity of ant queens. Journal of Invertebrate Pathology, 130, 61–63. [CrossRef] [PubMed] [Google Scholar]
  53. Pfliegler WP, Báthori F, Haelewaters D, Tartally A. 2016. Studies of Laboulbeniales on Myrmica ants (III): myrmecophilous arthropods as alternative hosts of Rickia wasmannii. Parasite, 23, 50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, Duran D, Hazell S, Kamoun S, Sumlin W, Vogler A. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609. [Google Scholar]
  55. Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. [Google Scholar]
  56. Radchenko AG, Elmes GW. 2010. Myrmica ants (Hymenoptera: Formicidae) of the old world. Warsaw, Poland: Natura optima dux. [Google Scholar]
  57. Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. Accessed December 12, 2018. http://tree.bio.ed.ac.uk/software/tracer/. [Google Scholar]
  58. Reboleira ASPS, Enghoff H, Santamaria S. 2018. Novelty upon novelty visualized by rotational scanning electron micrographs (rSEM): Laboulbeniales on the millipede order Chordeumatida. Plos One, 13, e0206900. [CrossRef] [PubMed] [Google Scholar]
  59. Santamaria S, Enghoff H, Reboleira ASPS. 2014. Laboulbeniales on millipedes: the genera Diplopodomyces and Troglomyces. Mycologia, 106, 1027–1038. [CrossRef] [PubMed] [Google Scholar]
  60. Santamaria S, Enghoff H, Reboleira ASPS. 2016. Hidden biodiversity revealed by collections-based research – Laboulbeniales in millipedes: genus Rickia. Phytotaxa, 243, 101–127. [Google Scholar]
  61. Santamaria S, Enghoff H, Reboleira ASPS. 2018. New species of Troglomyces and Diplopodomyces (Laboulbeniales, Ascomycota) from millipedes (Diplopoda). European Journal of Taxonomy, 429, 1–20. [Google Scholar]
  62. Scheloske H-W. 1969. Beiträge zur Biologie, Ökologie und Systematik der Laboulbeniales (Ascomycetes) unter besondere Berücksichtigung des Parasit-Wirt-Verhältnisses. Parasitologische Schriftenreihe, 19, 1–176. [Google Scholar]
  63. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246. [CrossRef] [PubMed] [Google Scholar]
  64. Seifert B. 1988. A taxonomic revision of the Myrmica species of Europe, Asia Minor and Caucasia (Hymenoptera, Formicidae). Abhandlungen und Berichte des Naturkundemuseums Görlitz, 62, 1–75. [Google Scholar]
  65. Seifert B. 2018. The ants of Central and North Europe. Tauer, Germany: lutra Verlags- und Vertriebsgesellschaft. [Google Scholar]
  66. Stadler T. 2009. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. Journal of Theoretical Biology, 261, 58–66. [CrossRef] [PubMed] [Google Scholar]
  67. Sundberg H. 2018. Contributions to the understanding of diversity and evolution in the genus Coreomyces. Ph.D. dissertation. Sweden: Uppsala University. [Google Scholar]
  68. Sundberg H, Kruys Å, Bergsten J, Ekman S. 2018. Position specificity in the genus Coreomyces (Laboulbeniomycetes, Ascomycota). Fungal Systematics and Evolution, 1, 217–228. [CrossRef] [Google Scholar]
  69. Swofford DL. 1991. PAUP: phylogenetic analysis using parsimony, version 3.1. Champaign, Illinois: Computer program distributed by the Illinois Natural History Survey. [Google Scholar]
  70. Thaxter R. 1908. Contribution toward a monograph of the Laboulbeniaceae. Part II. Memoirs of the American Academy of Arts and Sciences, 13, 217–469. Plates XXVIII-LXXI. [CrossRef] [Google Scholar]
  71. Tragust S, Tartally A, Espadaler X, Billen J. 2016. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecological News, 23, 81–89. [Google Scholar]
  72. van der Maaten L. 2014. Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning Research, 15, 3221–3245. [Google Scholar]
  73. van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605. [Google Scholar]
  74. Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246. [Google Scholar]
  75. Walker MJ, Dorrestein A, Camacho JJ, Meckler LA, Silas KA, Hiller T, Haelewaters D. 2018. A tripartite survey of hyperparasitic fungi associated with ectoparasitic flies on bats (Mammalia: Chiroptera) in a neotropical cloud forest in Panama. Parasite, 25, 19. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  76. Weir A, Hughes M. 2002. The taxonomic status of Corethromyces bicolor from New Zealand, as inferred from morphological, developmental, and molecular studies. Mycologia, 94, 483–493. [CrossRef] [PubMed] [Google Scholar]
  77. White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes, in PCR protocols: a guide to methods and applications, Innis MA, Gelfand DH, Sninsky JJ, White TJ, Editors. Academic Press: New York. p. 315–322. [Google Scholar]
  78. Witek M, Casacci LP, Barbero F, Patricelli D, Sala M, Bossi S, Maffei M, Woyciechowski M, Balletto E, Bonelli S. 2013. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biological Journal of the Linnean Society, 109, 699–709. [CrossRef] [Google Scholar]
  79. Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.