Open Access
Issue
Parasite
Volume 32, 2025
Article Number 9
Number of page(s) 15
DOI https://doi.org/10.1051/parasite/2024081
Published online 12 February 2025
  1. Adcock SA, McCammon JA. 2006. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589–1615. [CrossRef] [PubMed] [Google Scholar]
  2. Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, Hertz-Fowler C, Horn D. 2011. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Research, 21(6), 915–924. [CrossRef] [PubMed] [Google Scholar]
  3. Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bażant W, Belnap R, Blevins AS, Böhme U, Brestelli J, Brunk BP, Caddick M, Callan D, Campbell L, Christensen MB, Christophides GK, Crouch K, Davis K, DeBarry J, Doherty R, Duan Y, Dunn M, Falke D, Fisher S, Flicek P, Fox B, Gajria B, Giraldo-Calderón GI, Harb OS, Harper E, Hertz-Fowler C, Hickman MJ, Howington C, Hu S, Humphrey J, Iodice J, Jones A, Judkins J, Kelly SA, Kissinger JC, Kwon DK, Lamoureux K, Lawson D, Li W, Lies K, Lodha D, Long J, MacCallum RM, Maslen G, McDowell MA, Nabrzyski J, Roos DS, Rund SSC, Schulman SW, Shanmugasundram A, Sitnik V, Spruill D, Starns D, Stoeckert CJ, Tomko SS, Wang H, Warrenfeltz S, Wieck R, Wilkinson PA, Xu L, Zheng J. 2022. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Research, 50, D898–D911. [CrossRef] [PubMed] [Google Scholar]
  4. Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC. 2002. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death & Differentiation, 9, 1, 65–81. [CrossRef] [PubMed] [Google Scholar]
  5. Basmaciyan L, Casanova M. 2019. Cell death in Leishmania, Parasite, 26, 71. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. 2017. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 170095. [CrossRef] [PubMed] [Google Scholar]
  7. Berens RL, Brun R, Krassner SM. 1976. A simple monophasic medium for axenic culture of hemoflagellates. Journal of Parasitology, 62(3), 360–365. [CrossRef] [Google Scholar]
  8. Biyani N, Mandal S, Seth C, Saint M, Natarajan K, Ghosh I, Madhubala R. 2011. Characterization of Leishmania donovani aquaporins shows presence of subcellular aquaporins similar to tonoplast intrinsic proteins of plants. PLoS One, 6(9), e24820. [CrossRef] [PubMed] [Google Scholar]
  9. Bortner CD, Cidlowski JA. 2004. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflügers Archiv 448, 313–318. [CrossRef] [PubMed] [Google Scholar]
  10. Burza S, Croft SLBoelaert M. 2018. Leishmaniasis. Lancet, 392, 951–970. [CrossRef] [PubMed] [Google Scholar]
  11. Carneiro BA, El-Deiry WS. 2020. Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 17, 395–417. [CrossRef] [PubMed] [Google Scholar]
  12. Connolly ML. 1983. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221, 709–713. [CrossRef] [PubMed] [Google Scholar]
  13. Cory S, Adams JM. 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2(9), 647–656. [CrossRef] [PubMed] [Google Scholar]
  14. Courtenay O, Peters NC, Rogers ME, Bern C. 2017. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control. PLoS Pathogens, 13(10), e1006571. [CrossRef] [PubMed] [Google Scholar]
  15. De Las Rivas J, Fontanillo C. 2012. Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell. Briefings in Functional Genomics, 11, 489–496. [CrossRef] [PubMed] [Google Scholar]
  16. Debrabant A, Nakhasi H. 2003. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest? Kinetoplastid Biology and Disease, 2, 1–2. [CrossRef] [PubMed] [Google Scholar]
  17. Dong YW, Liao ML, Meng XL, Somero GN. 2018. Structural flexibility and protein adaptation to temperature: molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences, 115(6), 1274–1279. [CrossRef] [PubMed] [Google Scholar]
  18. Dorlo TPC, Balasegaram M, Beijnen JH, De Vries PJ. 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67, 2576–2597. [CrossRef] [PubMed] [Google Scholar]
  19. Dubessay P, Blaineau C, Bastien P, Tasse L, Van Dijk J, Crobu L, Pagès M. 2006. Cell cycle‐dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin‐13 kinesin. Molecular Microbiology, 59(4), 1162–1174. [CrossRef] [PubMed] [Google Scholar]
  20. Durrant JD, McCammon JA. 2011. Molecular dynamics simulations and drug discovery. BMC Biology, 9, 1–9. [CrossRef] [PubMed] [Google Scholar]
  21. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation, 101, 4, 890–898. [CrossRef] [PubMed] [Google Scholar]
  22. Fitch WM. 1970. Distinguishing homologous from analogous proteins. Systematic Zoology, 19(2), 99–113. [CrossRef] [PubMed] [Google Scholar]
  23. Galán-Cobo A, Ramírez-Lorca R, Echevarría M. 2016. Role of aquaporins in cell proliferation: what else beyond water permeability? Channels, 10(3), 185–201. [CrossRef] [PubMed] [Google Scholar]
  24. Galán-Cobo A, Ramírez-Lorca R, Serna A, Echevarría M. 2015. Overexpression of AQP3 modifies the cell cycle and the proliferation rate of mammalian cells in culture. PLoS One, 10(9), e0137692. [CrossRef] [PubMed] [Google Scholar]
  25. Genes CM, De Lucio H, Sánchez-Murcia PA, Gago F, Jiménez-Ruiz A. 2016. Pro-death activity of a BH3 domain in an aquaporin from the protozoan parasite Leishmania. Cell Death & Disease, 7(7), e2318. [CrossRef] [PubMed] [Google Scholar]
  26. Jiménez-García B, Pons C, Fernández-Recio J. 2013. pyDockWEB: a web server for rigid-body protein–protein docking using electrostatics and desolvation scoring, Bioinformatics, 29(13), 1698–1699. [CrossRef] [PubMed] [Google Scholar]
  27. Jiménez-Ruiz A, Alzate JF, MacLeod ET, Lüder CG, Fasel N, Hurd H. 2010. Apoptotic markers in protozoan parasites. Parasites & Vectors, 3, 104. [CrossRef] [PubMed] [Google Scholar]
  28. Kaczanowski S, Sajid M, Reece SE. 2011. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasites & Vectors, 4, 44. [CrossRef] [PubMed] [Google Scholar]
  29. Kale J, Osterlund EJ, Andrews DW. 2018. BCL-2 family proteins: changing partners in the dance towards death. Cell Death & Differentiation, 25(1), 65–80. [CrossRef] [PubMed] [Google Scholar]
  30. Kaloni D, Diepstraten ST, Strasser A, Kelly GL. 2023. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis, 28, 20–38. [CrossRef] [PubMed] [Google Scholar]
  31. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. [CrossRef] [PubMed] [Google Scholar]
  32. Killick‐Kendrick R. 1990. Phlebotomine vectors of the leishmaniases: a review. Medical and Veterinary Entomology, 4, 1, 1–24. [CrossRef] [PubMed] [Google Scholar]
  33. Ko J, Park H, Heo L, Seok C. 2012.GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40, W294–W297. [Google Scholar]
  34. Koonin EV. 2005. Orthologs, paralogs, and evolutionary genomics. Annual Review of Genetics, 39(1), 309–338. [CrossRef] [PubMed] [Google Scholar]
  35. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. 2017. The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. [CrossRef] [PubMed] [Google Scholar]
  36. Ku B, Liang C, Jung JU, Oh BH. 2011. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Research, 21(4), 627–641. [CrossRef] [PubMed] [Google Scholar]
  37. Lee N, Gannavaram S, Selvapandiyan A, Debrabant A. 2007. Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. Eukaryotic Cell, 6(10), 1745–1757. [Google Scholar]
  38. Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178–2189. [CrossRef] [PubMed] [Google Scholar]
  39. Lobanov MY, Bogatyreva NS, Galzitskaya OV. 2008. Radius of gyration as an indicator of protein structure compactness. Molecular Bioliogy, 42, 623–628. [CrossRef] [Google Scholar]
  40. Lomonosova E, Chinnadurai G. 2008. BH3-only proteins in apoptosis and beyond: an overview. Oncogene, 27(1), S2–S19. [Google Scholar]
  41. Lüder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G. 2010. Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasites & Vectors, 3, 116. [CrossRef] [PubMed] [Google Scholar]
  42. Martínez-Calvillo S, Stuart K, Myler PJ. 2005. Ploidy changes associated with disruption of two adjacent genes on Leishmania major chromosome 1. International Journal for Parasitology, 35(4), 419–429. [CrossRef] [PubMed] [Google Scholar]
  43. Moreno SN, Docampo R. 2009. The role of acidocalcisomes in parasitic protists 1. Journal of Eukaryotic Microbiology, 56(3), 208–213. [CrossRef] [PubMed] [Google Scholar]
  44. Morris GM, Lim-Wilby M. 2008. Molecular docking. Molecular Modeling of Proteins, 443, 365–382. [CrossRef] [PubMed] [Google Scholar]
  45. Park H, Seok C. 2012. Refinement of unreliable local regions in template‐based protein models. Proteins: Structure. Function and Bioinformatics, 80(8), 1974–1986. [CrossRef] [PubMed] [Google Scholar]
  46. Pradhan S, Schwartz RA, Patil A, Grabbe S, Goldust M. 2022. Treatment options for leishmaniasis. Clinical and Experimental Dermatology, 47(3), 516–521. [CrossRef] [PubMed] [Google Scholar]
  47. WHO. 2021. Global leishmaniasis surveillance: 2019–2020, a baseline for the 2030 roadmap – Surveillance mondiale de la leishmaniose: 2019–2020, une période de référence pour la feuille de route à l’horizon 2030. Weekly Epidemiological Record = Relevé Épidémiologique Hebdomadaire, 96, 401–419. Available from https://iris.who.int/handle/10665/344795 last access 4 July 2024. [Google Scholar]
  48. Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N. 2017. Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One, 12(2), e0171306. [CrossRef] [PubMed] [Google Scholar]
  49. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. 2011. BH3-only proteins: Orchestrators of apoptosis. Biochimica et Biophysica Acta (BBA) Molecular Cell Research, 1813(4), 508–520. [CrossRef] [Google Scholar]
  50. Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. 2010. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasites & Vectors, 3, 107. [CrossRef] [PubMed] [Google Scholar]
  51. Smirlis D, Soteriadou K. 2011. Trypanosomatid apoptosis: “Apoptosis” without the canonical regulators. Virulence, 2, 253–256. [CrossRef] [PubMed] [Google Scholar]
  52. Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. 2020. QMEANDisCo – distance constraints applied on model quality estimation, Bioinformatics, 36(6), 1765–1771. [CrossRef] [PubMed] [Google Scholar]
  53. Uliana SR, Trinconi CT, Coelho AC. 2018. Chemotherapy of leishmaniasis: present challenges. Parasitology, 145(4), 464–480. [CrossRef] [PubMed] [Google Scholar]
  54. Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. 2020. Gene editing in trypanosomatids: tips and tricks in the CRISPR-Cas9 era. Trends in Parasitology, 36(9), 745–760. [CrossRef] [PubMed] [Google Scholar]
  55. Yan Y, Tao H, He J, Huang SY. 2020. The HDOCK server for integrated protein–protein docking. Nature Protocols, 15(5), 1829–1852. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.