Open Access
Review
Issue
Parasite
Volume 32, 2025
Article Number 18
Number of page(s) 17
DOI https://doi.org/10.1051/parasite/2025009
Published online 05 March 2025
  1. Abu Ammar A, Nasereddin A, Ereqat S, Dan-Goor M, Jaffe CL, Zussman E, Abdeen Z. 2019. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Delivery and Translational Research, 9, 76–84. [CrossRef] [PubMed] [Google Scholar]
  2. Afzal I, Sarwar HS, Sohail MF, Varikuti S, Jahan S, Akhtar S, Yasinzai M, Satoskar AR, Shahnaz G. 2019. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine, 14, 387–406. [CrossRef] [PubMed] [Google Scholar]
  3. Andrade-Neto VV, Pereira TM, Canto-Cavalheiro MD, Torres-Santos EC. 2016. Imipramine alters the sterol profile in Leishmania amazonensis and increases its sensitivity to miconazole. Parasites & Vectors, 9, 183. [CrossRef] [PubMed] [Google Scholar]
  4. de Assis TSM, Rosa DCP, Teixeira E de M, Cota G, Azeredo-da-Silva ALF, Werneck G, Rabello A. 2017. The direct costs of treating human visceral leishmaniasis in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 50, 478–482. [CrossRef] [PubMed] [Google Scholar]
  5. Asthana S, Gupta PK, Jaiswal AK, Dube A, Chourasia MK. 2015. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Nanomedicine, 10, 1093–1109. [CrossRef] [PubMed] [Google Scholar]
  6. Asthana S, Jaiswal AK, Gupta PK, Dube A, Chourasia MK. 2015. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. European Journal of Pharmaceutics and Biopharmaceutics, 89, 62–73. [CrossRef] [PubMed] [Google Scholar]
  7. Atay I, Kirmizibekmez H, Kaiser M, Akaydin G, Yesilada E, Tasdemir D. 2016. Evaluation of in vitro antiprotozoal activity of Ajuga laxmannii and its secondary metabolites. Pharmaceutical Biology, 54, 1808–1814. [CrossRef] [PubMed] [Google Scholar]
  8. Bashir U, Tahir M, Anwar MI, Manzoor F. 2019. Comparison of intralesional meglumine antimonite along with oral itraconazole to intralesional meglumine antimonite in the treatment of cutaneous leishmaniasis. Pakistan Journal of Medical Sciences, 35, 1669–1673. [PubMed] [Google Scholar]
  9. Baxarias M, Martínez-Orellana P, Baneth G, Solano-Gallego L. 2019. Immunotherapy in clinical canine leishmaniosis: a comparative update. Research in Veterinary Science, 125, 218–226. [CrossRef] [PubMed] [Google Scholar]
  10. Bezerra-Souza A, Fernandez-Garcia R, Rodrigues GF, Bolas-Fernandez F, Dalastra Laurenti M, Passero LF, Lalatsa A, Serrano DR. 2019. Repurposing butenafine as an oral nanomedicine for visceral leishmaniasis. Pharmaceutics, 11, 353. [CrossRef] [PubMed] [Google Scholar]
  11. Bhatnagar M, Sarkar N, Gandharv N, Apang O, Singh S, Ghosal S. 2017. Evaluation of antimycobacterial, leishmanicidal and antibacterial activity of three medicinal orchids of Arunachal Pradesh, India. BMC Complementary and Alternative Medicine, 17, 379. [CrossRef] [PubMed] [Google Scholar]
  12. Braga SS. 2019. Multi-target drugs active against leishmaniasis: a paradigm of drug repurposing. European Journal of Medicinal Chemistry, 183, 111660. [CrossRef] [PubMed] [Google Scholar]
  13. Brito G, Dourado M, Guimarães LH, Meireles E, Schriefer A, Carvalho EM, Machado PRL. 2017. Oral pentoxifylline associated with pentavalent antimony: a randomized trial for cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, 96, 1155–1159. [CrossRef] [PubMed] [Google Scholar]
  14. Carvalho JDP, Assis TMD, Simões TC, Cota G. 2021. Estimating direct costs of the treatment for mucosal leishmaniasis in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 54, e04542020. [CrossRef] [PubMed] [Google Scholar]
  15. Casa DM, Scariot DB, Khalil NM, Nakamura CV, Mainardes RM. 2018. Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. Experimental Parasitology, 192, 12–18. [CrossRef] [PubMed] [Google Scholar]
  16. Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R. 2011. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PloS One, 6, e26660. [CrossRef] [PubMed] [Google Scholar]
  17. Collier MA, Peine KJ, Gautam S, Oghumu S, Varikuti S, Borteh H, Papenfuss TL, Sataoskar AR, Bachelder EM, Ainslie KM. 2016. Host-mediated Leishmania donovani treatment using AR-12 encapsulated in acetalated dextran microparticles. International Journal of Pharmaceutics, 499, 186–194. [CrossRef] [PubMed] [Google Scholar]
  18. Da Silva BJM, Da Silva RRP, Rodrigues APD, Farias LHS, Do Nascimento JLM, Silva EO. 2016. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species. Micron, 82, 25–32. [CrossRef] [PubMed] [Google Scholar]
  19. Da Silva BJM, Souza-Monteiro JR, Rogez H, Crespo-López ME, Do Nascimento JLM, Silva EO. 2018. Selective effects of Euterpe oleracea (açai) on Leishmania (Leishmania) amazonensis and Leishmania infantum. Biomedicine & Pharmacotherapy, 97, 1613–1621. [CrossRef] [Google Scholar]
  20. Dar MJ, Din FU, Khan GM. 2018. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Delivery, 25, 1595–1606. [CrossRef] [PubMed] [Google Scholar]
  21. Dar MJ, Khalid S, McElroy CA, Satoskar AR, Khan GM. 2020. Topical treatment of cutaneous leishmaniasis with novel amphotericin B-miltefosine co-incorporated second generation ultra-deformable liposomes. International Journal of Pharmaceutics, 573, 118900. [CrossRef] [PubMed] [Google Scholar]
  22. Das A, Jawed JJ, Das MC, Sandhu P, De UC, Dinda B, Akhter Y, Bhattacharjee S. 2017. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa. International Journal of Antimicrobial Agents, 50, 512–522. [CrossRef] [PubMed] [Google Scholar]
  23. De Muylder G, Ang KKH, Chen S, Arkin MR, Engel JC, McKerrow JH. 2011. A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Neglected Tropical Diseases, 5, e1253. [CrossRef] [PubMed] [Google Scholar]
  24. Demarchi IG, Terron M de S, Thomazella MV, Mota CA, Gazim ZC, Cortez DAG, Aristides SMA, Silveira TGV, Lonardoni MVC. 2016. Antileishmanial and immunomodulatory effects of the essential oil from Tetradenia riparia (Hochstetter) Codd. Parasite Immunology, 38, 64–77. [CrossRef] [PubMed] [Google Scholar]
  25. Dey S, Mukherjee D, Chakraborty S, Mallick S, Dutta A, Ghosh J, Swapana N, Maiti S, Ghorai N, Singh CB, Pal C. 2015. Protective effect of Croton caudatus Geisel leaf extract against experimental visceral leishmaniasis induces proinflammatory cytokines in vitro and in vivo. Experimental Parasitology, 151–152, 84–95. [CrossRef] [PubMed] [Google Scholar]
  26. Diro E, Blesson S, Edwards T, Ritmeijer K, Fikre H, Admassu H, Kibret A, Ellis SJ, Bardonneau C, Zijlstra EE, Soipei P, Mutinda B, Omollo R, Kimutai R, Omwalo G, Wasunna M, Tadesse F, Alves F, Strub-Wourgaft N, Hailu A, Alexander N, Alvar J. 2019. A randomized trial of AmBisome monotherapy and AmBisome and miltefosine combination to treat visceral leishmaniasis in HIV co-infected patients in Ethiopia. PLoS Neglected Tropical Diseases, 13, e0006988. [CrossRef] [PubMed] [Google Scholar]
  27. El Hajj R, Bou Youness H, Lachaud L, Bastien P, Masquefa C, Bonnet P-A, El Hajj H, Khalifeh I. 2018. EAPB0503: An Imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Neglected Tropical Diseases, 12, e0006854. [CrossRef] [PubMed] [Google Scholar]
  28. Frézard F, Demicheli C, Ribeiro RR. 2009. Pentavalent antimonials: new perspectives for old drugs. Molecules, 14, 2317–2336. [CrossRef] [PubMed] [Google Scholar]
  29. da Gama Bitencourt JJ, Pazin WM, Ito AS, Barioni MB, de Paula Pinto C, Santos MAD, Guimarães THS, Santos MRMD, Valduga CJ. 2016. Miltefosine-loaded lipid nanoparticles: Improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages. Biophysical Chemistry, 217, 20–31. [CrossRef] [PubMed] [Google Scholar]
  30. García Díaz J, Tuenter E, Escalona Arranz JC, Llauradó Maury G, Cos P, Pieters L. 2019. Antimicrobial activity of leaf extracts and isolated constituents of Croton linearis. Journal of Ethnopharmacology, 236, 250–257. [CrossRef] [PubMed] [Google Scholar]
  31. García-Hernández R, Manzano JI, Castanys S, Gamarro F. 2012. Leishmania donovani develops resistance to drug combinations. PLoS Neglected Tropical Diseases, 6, e1974. [CrossRef] [PubMed] [Google Scholar]
  32. Gaspar MM, Calado S, Pereira J, Ferronha H, Correia I, Castro H, Tomás AM, Cruz MEM. 2015. Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. Nanomedicine, 11, 1851–1860. [CrossRef] [PubMed] [Google Scholar]
  33. Gil Z, Martinez-Sotillo N, Pinto-Martinez A, Mejias F, Martinez JC, Galindo I, Oldfield E, Benaim G. 2020. SQ109 inhibits proliferation of Leishmania donovani by disruption of intracellular Ca2+ homeostasis, collapsing the mitochondrial electrochemical potential (ΔΨm) and affecting acidocalcisomes. Parasitology Research, 119, 649–657. [CrossRef] [PubMed] [Google Scholar]
  34. Girardi C, Fabre N, Paloque L, Ramadani AP, Benoit-Vical F, González-Aspajo G, Haddad M, Rengifo E, Jullian V. 2015. Evaluation of antiplasmodial and antileishmanial activities of herbal medicine Pseudelephantopus spiralis (Less.) Cronquist and isolated hirsutinolide-type sesquiterpenoids. Journal of Ethnopharmacology, 170, 167–174. [CrossRef] [PubMed] [Google Scholar]
  35. Goyonlo VM, Vahabi-Amlashi S, Taghavi F. 2019. Successful treatment by adding thalidomide to meglumine antimoniate in a case of refractory anthroponotic mucocutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 11, 177–179. [CrossRef] [Google Scholar]
  36. van Griensven J, Diro E. 2012. Visceral leishmaniasis. Infectious Disease Clinics of North America, 26, 309–322. [CrossRef] [PubMed] [Google Scholar]
  37. van Griensven J, Diro E. 2019. Visceral leishmaniasis: recent advances in diagnostics and treatment regimens. Infectious Disease Clinics of North America, 33, 79–99. [CrossRef] [PubMed] [Google Scholar]
  38. Gupta G, Oghumu S, Satoskar AR. 2013. Mechanisms of immune evasion in leishmaniasis. Advances in Applied Microbiology, 82, 155–184. [CrossRef] [PubMed] [Google Scholar]
  39. Gupta G, Peine KJ, Abdelhamid D, Snider H, Shelton AB, Rao L, Kotha SR, Huntsman AC, Varikuti S, Oghumu S, Naman CB, Pan L, Parinandi NL, Papenfuss TL, Kinghorn AD, Bachelder EM, Ainslie KM, Fuchs JR, Satoskar AR. 2015. A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infectious Diseases, 1, 497–506. [CrossRef] [PubMed] [Google Scholar]
  40. Gupta PK, Jaiswal AK, Asthana S, Verma A, Kumar V, Shukla P, Dwivedi P, Dube A, Mishra PR. 2015. Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis. Pharmaceutical Research, 32, 1727–1740. [CrossRef] [PubMed] [Google Scholar]
  41. Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Badirzadeh A, Rafati S. 2016. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunology, 38, 599–608. [CrossRef] [PubMed] [Google Scholar]
  42. Hendrickx S, Van den Kerkhof M, Mabille D, Cos P, Delputte P, Maes L, Caljon G. 2017. Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Neglected Tropical Diseases, 11, e0005620. [CrossRef] [PubMed] [Google Scholar]
  43. Iman M, Huang Z, Alavizadeh SH, Szoka FC, Jaafari MR. 2017. Biodistribution and in vivo antileishmanial activity of 1, 2-distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine liposome-intercalated amphotericin B. Antimicrobial Agents and Chemotherapy, 61, e02525-16. [CrossRef] [PubMed] [Google Scholar]
  44. Kasabalis D, Chatzis MK, Apostolidis K, Xenoulis PG, Buono A, Petanides T, Leontides LS, Polizopoulou ZS, Steiner JM, Suchodolski JS, Saridomichelakis MN. 2019. Evaluation of nephrotoxicity and ototoxicity of aminosidine (paromomycin)-allopurinol combination in dogs with leishmaniosis due to Leishmania infantum: a randomized, blinded, controlled study. Experimental Parasitology, 206, 107768. [CrossRef] [PubMed] [Google Scholar]
  45. Khadir F, Taheri T, Habibzadeh S, Zahedifard F, Gholami E, Heidari-Kharaji M, Oryan A, Rafati S. 2019. Antileishmanial effect of rapamycin as an alternative approach to control Leishmania tropica infection. Veterinary Parasitology, 276, 108976. [CrossRef] [PubMed] [Google Scholar]
  46. Khanra S, Juin SK, Jawed JJ, Ghosh S, Dutta S, Nabi SA, Dash J, Dasgupta D, Majumdar S, Banerjee R. 2020. In vivo experiments demonstrate the potent antileishmanial efficacy of repurposed suramin in visceral leishmaniasis. PLoS Neglected Tropical Diseases, 14, e0008575. [CrossRef] [PubMed] [Google Scholar]
  47. Khodabandeh M, Rostami A, Borhani K, Gamble HR, Mohammadi M. 2019. Treatment of resistant visceral leishmaniasis with interferon gamma in combination with liposomal amphotericin B and allopurinol. Parasitology International, 72, 101934. [CrossRef] [PubMed] [Google Scholar]
  48. Kumar R, Sahoo GC, Pandey K, Das V, Das P. 2015. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Delivery, 22, 383–388. [CrossRef] [PubMed] [Google Scholar]
  49. Kumar R, Sahoo GC, Pandey K, Das VNR, Topno RK, Ansari MY, Rana S, Das P. 2016. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Materials Science & Engineering. C, Materials for Biological Applications, 59, 748–753. [CrossRef] [PubMed] [Google Scholar]
  50. LeishVet. A non profit scientific association. https://www.leishvet.org. [Google Scholar]
  51. Lima GS, Castro-Pinto DB, Machado GC, Maciel MAM, Echevarria A. 2015. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine, 22, 1133–1137. [CrossRef] [PubMed] [Google Scholar]
  52. Lima ML, Abengózar MA, Nácher-Vázquez M, Martínez-Alcázar MP, Barbas C, Tempone AG, López-Gonzálvez Á, Rivas L. 2018. Molecular basis of the leishmanicidal activity of the antidepressant sertraline as a drug repurposing candidate. Antimicrobial Agents and Chemotherapy, 62, e01928-18. [CrossRef] [PubMed] [Google Scholar]
  53. Macedo SRA, de Figueiredo Nicolete LD, Ferreira ADS, de Barros NB, Nicolete R. 2015. The pentavalent antimonial therapy against experimental Leishmania amazonensis infection is more effective under the inhibition of the NF-κB pathway. International Immunopharmacology, 28, 554–559. [CrossRef] [PubMed] [Google Scholar]
  54. Manna L, Corso R, Galiero G, Cerrone A, Muzj P, Gravino AE. 2015. Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol. Parasites & Vectors, 8, 289. [CrossRef] [PubMed] [Google Scholar]
  55. do Carmo Maquiaveli C, Oliveira E Sá AM, Vieira PC, da Silva ER. 2016. Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasite arginase inhibition. Journal of Ethnopharmacology, 192, 108–113. [CrossRef] [PubMed] [Google Scholar]
  56. do Carmo Maquiaveli C, Rochetti AL, Fukumasu H, Vieira PC, da Silva ER. 2017. Antileishmanial activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ. Biochemical Pharmacology, 127, 28–33. [CrossRef] [PubMed] [Google Scholar]
  57. Meheus F, Abuzaid AA, Baltussen R, Younis BM, Balasegaram M, Khalil EAG, Boelaert M, Musa AM. 2013. The economic burden of visceral leishmaniasis in Sudan: an assessment of provider and household costs. American Journal of Tropical Medicine and Hygiene, 89, 1146–1153. [CrossRef] [PubMed] [Google Scholar]
  58. Miranda-Verastegui C, Tulliano G, Gyorkos TW, Calderon W, Rahme E, Ward B, Cruz M, Llanos-Cuentas A, Matlashewski G. 2009. First-line therapy for human cutaneous leishmaniasis in Peru using the TLR7 agonist imiquimod in combination with pentavalent antimony. PLoS Neglected Tropical Diseases, 3, e491. [CrossRef] [PubMed] [Google Scholar]
  59. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. 2021. Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20, 101–124. [CrossRef] [PubMed] [Google Scholar]
  60. de Morais-Teixeira E, Aguiar MG, Soares de Souza Lima B, Ferreira LAM, Rabello A. 2015. Combined suboptimal schedules of topical paromomycin, meglumine antimoniate and miltefosine to treat experimental infection caused by Leishmania (Viannia) braziliensis. Journal of Antimicrobial Chemotherapy, 70, 3283–3290. [Google Scholar]
  61. Moreira VR, de Jesus LCL, Soares R-EP, Silva LDM, Pinto BAS, Melo MN, Paes AM de A, Pereira SRF. 2017. Meglumine antimoniate (glucantime) causes oxidative stress-derived dna damage in BALB/c mice infected by Leishmania (Leishmania) infantum. Antimicrobial Agents and Chemotherapy, 61, e02360-16. [Google Scholar]
  62. Mukherjee D, Singh CB, Dey S, Mandal S, Ghosh J, Mallick S, Hussain A, Swapana N, Ross SA, Pal C. 2016. Induction of apoptosis by zerumbone isolated from Zingiber zerumbet (L.) Smith in protozoan parasite Leishmania donovani due to oxidative stress. Brazilian Journal of Infectious Diseases, 20, 48–55. [CrossRef] [Google Scholar]
  63. Murray HW. 2005. Interleukin 10 receptor blockade–pentavalent antimony treatment in experimental visceral leishmaniasis. Acta Tropica, 93, 295–301. [CrossRef] [PubMed] [Google Scholar]
  64. Murray HW, Brooks EB, DeVecchio JL, Heinzel FP. 2003. Immunoenhancement combined with amphotericin B as treatment for experimental visceral leishmaniasis. Antimicrobial Agents and Chemotherapy, 47, 2513–2517. [CrossRef] [PubMed] [Google Scholar]
  65. Murray HW, Flanders KC, Donaldson DD, Sypek JP, Gotwals PJ, Liu J, Ma X. 2005. Antagonizing deactivating cytokines to enhance host defense and chemotherapy in experimental visceral leishmaniasis. Infection and Immunity, 73, 3903–3911. [CrossRef] [PubMed] [Google Scholar]
  66. Mutiso JM, Macharia JC, Barasa M, Taracha E, Bourdichon AJ, Gicheru MM. 2011. In vitro and in vivo antileishmanial efficacy of a combination therapy of diminazene and artesunate against Leishmania donovani in BALB/c mice. Revista do Instituto de Medicina Tropical de Sao Paulo, 53, 129–132. [CrossRef] [PubMed] [Google Scholar]
  67. Nandan D, Zhang N, Yu Y, Schwartz B, Chen S, Kima PE, Reiner NE. 2018. Miransertib (ARQ 092), an orally-available, selective Akt inhibitor is effective against Leishmania. PloS One, 13, e0206920. [CrossRef] [PubMed] [Google Scholar]
  68. Netea MG, Van der Meer JWM, Sutmuller RP, Adema GJ, Kullberg B-J. 2005. From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrobial Agents and Chemotherapy, 49, 3991–3996. [CrossRef] [PubMed] [Google Scholar]
  69. Nieto-Yañez OJ, Resendiz-Albor AA, Ruiz-Hurtado PA, Rivera-Yañez N, Rodriguez-Canales M, Rodriguez-Sosa M, Juarez-Avelar I, Rodriguez-Lopez MG, Canales-Martinez MM, Rodriguez-Monroy MA. 2017. In vivo and in vitro antileishmanial effects of methanolic extract from bark of Bursera aptera. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 14, 188–197. [Google Scholar]
  70. Obbo CJD, Kariuki ST, Gathirwa JW, Olaho-Mukani W, Cheplogoi PK, Mwangi EM. 2019. In vitro antiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: refocusing into multi-component potentials. Journal of Ethnopharmacology, 229, 127–136. [CrossRef] [PubMed] [Google Scholar]
  71. Oryan A, Bemani E, Bahrami S. 2018. Emerging role of amiodarone and dronedarone, as antiarrhythmic drugs, in treatment of leishmaniasis. Acta Tropica, 185, 34–41. [CrossRef] [PubMed] [Google Scholar]
  72. Parihar SP, Hartley M-A, Hurdayal R, Guler R, Brombacher F. 2016. Topical simvastatin as host-directed therapy against severity of cutaneous leishmaniasis in mice. Scientific Reports, 6, 33458. [CrossRef] [PubMed] [Google Scholar]
  73. Parvez S, Yadagiri G, Gedda MR, Singh A, Singh OP, Verma A, Sundar S, Mudavath SL. 2020. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Scientific Reports, 10, 12243. [CrossRef] [PubMed] [Google Scholar]
  74. Patterson S, Wyllie S, Norval S, Stojanovski L, Simeons FR, Auer JL, Osuna-Cabello M, Read KD, Fairlamb AH. 2016. The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis. eLife, 5, e09744. [CrossRef] [PubMed] [Google Scholar]
  75. Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. 2017. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Tropical Diseases, 11, e0006052. [CrossRef] [PubMed] [Google Scholar]
  76. Ray L, Karthik R, Srivastava V, Singh SP, Pant AB, Goyal N, Gupta KC. 2021. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Delivery and Translational Research, 11, 118–130. [CrossRef] [PubMed] [Google Scholar]
  77. Reguera RM, Morán M, Pérez-Pertejo Y, García-Estrada C, Balaña-Fouce R. 2016. Current status on prevention and treatment of canine leishmaniasis. Veterinary Parasitology, 227, 98–114. [CrossRef] [PubMed] [Google Scholar]
  78. Reis LES, Fortes de Brito RC, Cardoso JM de O, Mathias FAS, Aguiar Soares RDO, Carneiro CM, de Abreu Vieira PM, Ramos GS, Frézard FJG, Roatt BM, Reis AB. 2017. Mixed formulation of conventional and pegylated meglumine antimoniate-containing liposomes reduces inflammatory process and parasite burden in Leishmania infantum-infected BALB/c mice. Antimicrobial Agents and Chemotherapy, 61, e00962-17. [Google Scholar]
  79. Rodrigues KA da F, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, Carvalho FA de A. 2015. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. Journal of Ethnopharmacology, 160, 32–40. [CrossRef] [PubMed] [Google Scholar]
  80. Rosenthal E, Delaunay P, Jeandel P-Y, Haas H, Pomares-Estran C, Marty P. 2009. Liposomal amphotericin B as treatment for visceral leishmaniasis in Europe, 2009. Médecine et Maladies Infectieuses, 39, 741–744. [CrossRef] [Google Scholar]
  81. Roy S, Dutta D, Satyavarapu EM, Yadav PK, Mandal C, Kar S, Mandal C. 2017. Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Scientific Reports, 7, 4141. [CrossRef] [PubMed] [Google Scholar]
  82. Santos ALS, Matteoli FP, Gonçalves DS, Seabra SH, Romanos MTV, Branquinha MH, Resende GO, Cotrim BA, Aguiar LCS, Sangenito LS. 2019. In vitro effects of the asymmetric peptidomimetic 157, containing l-tartaric acid core and valine/leucine substituents, on Leishmania amazonensis promastigotes and amastigotes. Parasitology International, 73, 101968. [CrossRef] [PubMed] [Google Scholar]
  83. Santos BM, Bezerra-Souza A, Aragaki S, Rodrigues E, Umehara E, Ghilardi Lago JH, Laurenti MD, Ribeiro SP, Passero LFD. 2019. Ethnopharmacology study of plants from Atlantic forest with leishmanicidal activity. Evidence-Based Complementary and Alternative Medicine: eCAM, 2019, 8780914. [CrossRef] [Google Scholar]
  84. Santos MF, Alexandre-Pires G, Pereira MA, Marques CS, Gomes J, Correia J, Duarte A, Gomes L, Rodrigues AV, Basso A, Reisinho A, Meireles J, Santos-Mateus D, Brito MTV, Tavares L, Santos-Gomes GM, da Fonseca IP. 2019. Meglumine antimoniate and miltefosine combined with allopurinol sustain pro-inflammatory immune environments during canine leishmaniosis treatment. Frontiers in Veterinary Science, 6, 362. [CrossRef] [PubMed] [Google Scholar]
  85. Schwartz J, Moreno E, Calvo A, Blanco L, Fernández-Rubio C, Sanmartín C, Nguewa P, Irache JM, Larrea E, Espuelas S. 2018. Combination of paromomycin plus human anti-TNF-α antibodies to control the local inflammatory response in BALB/mice with cutaneous leishmaniasis lesions. Journal of Dermatological Science, 92, 78–88. [CrossRef] [PubMed] [Google Scholar]
  86. Shalev-Benami M, Zhang Y, Rozenberg H, Nobe Y, Taoka M, Matzov D, Zimmerman E, Bashan A, Isobe T, Jaffe CL, Yonath A, Skiniotis G. 2017. Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nature Communications, 8, 1589. [CrossRef] [PubMed] [Google Scholar]
  87. da Silva Rodrigues JH, Miranda N, Volpato H, Ueda-Nakamura T, Nakamura CV. 2019. The antidepressant clomipramine induces programmed cell death in Leishmania amazonensis through a mitochondrial pathway. Parasitology Research, 118, 977–989. [CrossRef] [PubMed] [Google Scholar]
  88. Singh OP, Singh B, Chakravarty J, Sundar S. 2016. Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infectious Diseases of Poverty, 5, 19. [CrossRef] [PubMed] [Google Scholar]
  89. Singh PK, Jaiswal AK, Pawar VK, Raval K, Kumar A, Bora HK, Dube A, Chourasia MK. 2018. Fabrication of 3-O-sn-phosphatidyl-l-serine anchored plga nanoparticle bearing amphotericin b for macrophage targeting. Pharmaceutical Research, 35, 60. [CrossRef] [PubMed] [Google Scholar]
  90. Singh-Phulgenda S, Kumar R, Dahal P, Munir A, Rashan S, Chhajed R, Naylor C, Maguire BJ, Siddiqui NA, Harriss E, Rahi M, Alves F, Sundar S, Stepniewska K, Musa A, Guerin PJ, Pandey K. 2024. Post-kala-azar dermal leishmaniasis (PKDL) drug efficacy study landscape: A systematic scoping review of clinical trials and observational studies to assess the feasibility of establishing an individual participant-level data (IPD) platform. PLoS Neglected Tropical Diseases, 18, e0011635. [CrossRef] [PubMed] [Google Scholar]
  91. Soltani S, Mojiri-Forushani H, Soltani S, Kahvaz MS, Foroutan M. 2020. Evaluation of antileishmanial activity employing conventional and solid lipid nanoparticles of amphotericin B on Leishmania major in vitro and in vivo. Infectious Disorders Drug Targets, 20, 822–827. [Google Scholar]
  92. Sosa N, Pascale JM, Jiménez AI, Norwood JA, Kreishman-Detrick M, Weina PJ, Lawrence K, McCarthy WF, Adams RC, Scott C, Ransom J, Tang D, Grogl M. 2019. Topical paromomycin for New World cutaneous leishmaniasis. PLOS Neglected Tropical Diseases, 13, e0007253. [CrossRef] [PubMed] [Google Scholar]
  93. Soto J, Soto P, Ajata A, Rivero D, Luque C, Tintaya C, Berman J. 2018. Miltefosine combined with intralesional pentamidine for Leishmania braziliensis cutaneous leishmaniasis in Bolivia. American Journal of Tropical Medicine and Hygiene, 99, 1153–1155. [CrossRef] [PubMed] [Google Scholar]
  94. Sousa-Batista A de J, Cerqueira-Coutinho C, Carmo FS do, Albernaz M de S, Santos-Oliveira R. 2019. Polycaprolactone antimony nanoparticles as drug delivery system for leishmaniasis. American Journal of Therapeutics, 26, e12–e17. [CrossRef] [PubMed] [Google Scholar]
  95. Souza AC, Alves MM de M, Brito LM, Oliveira LGDC, Sobrinho-Júnior EPC, Costa ICG, Freitas SDL, Rodrigues KA da F, Chaves MH, Arcanjo DDR, Carvalho FA de A. 2017. Platonia insignis Mart., a Brazilian Amazonian Plant: The stem barks extract and its main constituent lupeol exert antileishmanial effects involving macrophages activation. Evidence-Based Complementary and Alternative Medicine: eCAM, 2017, 3126458. [CrossRef] [PubMed] [Google Scholar]
  96. Souza RM de, Maranhão RC, Tavares ER, Filippin-Monteiro FB, Nicodemo AC, Morikawa AT, Kanashiro EHY, Amato VS. 2020. Lipid nanoparticles for amphotericin delivery in the treatment of American tegumentary leishmaniasis. Drug Delivery and Translational Research, 10, 403–412. [CrossRef] [PubMed] [Google Scholar]
  97. Tasdemir D, MacIntosh AJJ, Stergiou P, Kaiser M, Mansour NR, Bickle Q, Huffman MA. 2020. Antiprotozoal and antihelminthic properties of plants ingested by wild Japanese macaques (Macaca fuscata yakui) in Yakushima Island. Journal of Ethnopharmacology, 247, 112270. [CrossRef] [PubMed] [Google Scholar]
  98. Taslimi Y, Zahedifard F, Rafati S. 2018. Leishmaniasis and various immunotherapeutic approaches. Parasitology, 145, 497–507. [CrossRef] [PubMed] [Google Scholar]
  99. Teixeira de Macedo Silva S, Visbal G, Lima Prado Godinho J, Urbina JA, Souza W de, Cola Fernandes Rodrigues J. 2018. In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis. Journal of Antimicrobial Chemotherapy, 73, 2360–2373. [CrossRef] [PubMed] [Google Scholar]
  100. Téllez J, Echeverry MC, Romero I, Guatibonza A, Santos Ramos G, Borges De Oliveira AC, Frézard F, Demicheli C. 2021. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives. Journal of Liposome Research, 31, 169–176. [CrossRef] [PubMed] [Google Scholar]
  101. Tripathi P, Jaiswal AK, Dube A, Mishra PR. 2017. Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified Ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. International Journal of Biological Macromolecules, 105, 625–637. [CrossRef] [PubMed] [Google Scholar]
  102. Valle IV, Machado ME, Araújo C da CB, Cunha-Junior EF da, Silva Pacheco J da, Torres-Santos EC, Silva LCRP da, Cabral LM, Carmo FA do, Sathler PC. 2019. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 30, 455102. [CrossRef] [PubMed] [Google Scholar]
  103. Varikuti S, Volpedo G, Saljoughian N, Hamza OM, Halsey G, Ryan NM, Sedmak BE, Seidler GR, Papenfuss TL, Oghumu S, Satoskar AR. 2019. The potent ITK/BTK inhibitor ibrutinib is effective for the treatment of experimental visceral leishmaniasis caused by Leishmania donovani. Journal of Infectious Diseases, 219, 599–608. [CrossRef] [PubMed] [Google Scholar]
  104. Vásquez-Ocmín P, Cojean S, Rengifo E, Suyyagh-Albouz S, Amasifuen Guerra CA, Pomel S, Cabanillas B, Mejía K, Loiseau PM, Figadère B, Maciuk A. 2018. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru). Journal of Ethnopharmacology, 210, 372–385. [CrossRef] [PubMed] [Google Scholar]
  105. Veeken H, Ritmeijer K, Seaman J, Davidson R. 2000. A randomized comparison of branded sodium stibogluconate and generic sodium stibogluconate for the treatment of visceral leishmaniasis under field conditions in Sudan. Tropical Medicine & International Health, 5, 312–317. [CrossRef] [PubMed] [Google Scholar]
  106. Velez R, Gállego M. 2020. Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Tropical Medicine & International Health, 25, 540–557. [CrossRef] [PubMed] [Google Scholar]
  107. Ventin F, Cincurá C, Machado PRL. 2018. Safety and efficacy of miltefosine monotherapy and pentoxifylline associated with pentavalent antimony in treating mucosal leishmaniasis. Expert Review of Anti-Infective Therapy, 16, 219–225. [CrossRef] [PubMed] [Google Scholar]
  108. Volpedo G, Pacheco-Fernandez T, Holcomb EA, Cipriano N, Cox B, Satoskar AR. 2021. Mechanisms of immunopathogenesis in cutaneous leishmaniasis and post kala-azar dermal leishmaniasis (PKDL). Frontiers in Cellular and Infection Microbiology, 11, 685296. [CrossRef] [PubMed] [Google Scholar]
  109. Wasunna M, Njenga S, Balasegaram M, Alexander N, Omollo R, Edwards T, Dorlo TPC, Musa B, Ali MHS, Elamin MY, Kirigi G, Juma R, Kip AE, Schoone GJ, Hailu A, Olobo J, Ellis S, Kimutai R, Wells S, Khalil EAG, Strub Wourgaft N, Alves F, Musa A. 2016. Efficacy and safety of ambisome in combination with sodium stibogluconate or miltefosine and miltefosine monotherapy for african visceral leishmaniasis: Phase II randomized trial. PLoS Neglected Tropical Diseases, 10, e0004880. [CrossRef] [PubMed] [Google Scholar]
  110. WHO Expert Committee on the Control of the Leishmaniases, World Health Organization. 2010. Control of the leishmaniases: report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22–26 March 2010. Control de Las Leishmaniasis: Informe de Una Reunión Del Comité de Expertos de La OMS Sobre El Control de Las Leishmaniasis, Ginebra, 22 a 26 de Marzo de 2010. [Google Scholar]
  111. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. [Google Scholar]
  112. World Health Organization. 2022. WHO GUIDELINE for the treatment of visceral leishmaniasis in HIV co-infected patients in East Africa and South-East Asia. [Google Scholar]
  113. Yang G, Choi G, No JH. 2016. Antileishmanial mechanism of diamidines involves targeting kinetoplasts. Antimicrobial Agents and Chemotherapy, 60, 6828–6836. [CrossRef] [PubMed] [Google Scholar]
  114. Zadeh Mehrizi T, Khamesipour A, Shafiee Ardestani M, Ebrahimi Shahmabadi H, Haji Molla Hoseini M, Mosaffa N, Ramezani A. 2019. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. International Journal of Nanomedicine, 14, 7593–7607. [CrossRef] [Google Scholar]
  115. Zhu Y, Liao L. 2015. Applications of nanoparticles for anticancer drug delivery: a review. Journal of Nanoscience and Nanotechnology, 15, 4753–4773. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.