Open Access
Issue
Parasite
Volume 32, 2025
Article Number 25
Number of page(s) 16
DOI https://doi.org/10.1051/parasite/2025017
Published online 15 April 2025
  1. Baker M, Krafsur E (2001) Identification and properties of microsatellite markers in tsetse flies Glossina morsitans sensu lato (Diptera: Glossinidae). Molecular Ecology Notes, 1, 234–236. [CrossRef] [PubMed] [Google Scholar]
  2. Belkhir K, Borsa P, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II: Montpellier, France. Available at http://www.genetix.univ-montp2.fr/genetix/genetix.htm. [Google Scholar]
  3. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300. [CrossRef] [Google Scholar]
  4. Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188. [CrossRef] [Google Scholar]
  5. Berté D, De Meeûs T, Kaba D, Séré M, Djohan V, Courtin F, Kassi MN, Koffi M, Jamonneau V, Ta BTD. 2019. Population genetics of Glossina palpalis palpalis in sleeping sickness foci of Côte d’Ivoire before and after vector control. Infection, Genetics and Evolution, 75, 103963. [CrossRef] [PubMed] [Google Scholar]
  6. Bouyer J, Dicko AH, Cecchi G, Ravel S, Guerrini L, Solano P, Vreysen MJ, De Meeûs T, Lancelot R. 2015. Mapping landscape friction to locate isolated tsetse populations that are candidates for elimination. Proceedings of the National Academy of Sciences, 112, 14575–14580. [CrossRef] [PubMed] [Google Scholar]
  7. Büscher P, Bart JM, Boelaert M, Bucheton B, Cecchi G, Chitnis N, Courtin D, Figueiredo LM, Franco JR, Grébaut P. 2018. Do cryptic reservoirs threaten gambiense-sleeping sickness elimination? Trends in Parasitology, 34, 197–207. [CrossRef] [PubMed] [Google Scholar]
  8. Büscher P, Cecchi G, Jamonneau V, Priotto G. 2017. Human African trypanosomiasis. Lancet, 390, 2397–2409. [CrossRef] [PubMed] [Google Scholar]
  9. Calvet F, Medkour H, Mediannikov O, Girardet C, Jacob A, Boni M, Davoust B. 2020. An African canine trypanosomosis case import: Is there a possibility of creating a secondary focus of Trypanosoma congolense infection in France? Pathogens, 9, 709. [CrossRef] [PubMed] [Google Scholar]
  10. Challier A. 1976. Écologie de Glossina palpalis gambiensis Vanderplank, 1949. Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 29, 131–140. [Google Scholar]
  11. Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24, 621–631. [CrossRef] [PubMed] [Google Scholar]
  12. Chevillon C, Pasteur N, Marquine M, Heyse D, Raymond M. 1995. Population structure and dynamics of selected genes in the mosquito Culex pipiens. Evolution, 49, 997–1007. [CrossRef] [Google Scholar]
  13. Clausen P, Adeyemi I, Bauer B, Breloeer M, Salchow F, Staak C. 1998. Host preferences of tsetse (Diptera: Glossinidae) based on bloodmeal identifications. Medical and Veterinary Entomology, 12, 169–180. [CrossRef] [PubMed] [Google Scholar]
  14. Coombs J, Letcher B, Nislow K. 2008. CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs. Molecular Ecology Resources, 8, 578–580. [CrossRef] [PubMed] [Google Scholar]
  15. Cornuet JM, Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014. [CrossRef] [PubMed] [Google Scholar]
  16. De Meeûs T, Humair PF, Grunau C, Delaye C, Renaud F. 2004. Non-Mendelian transmission of alleles at microsatellite loci: An example in Ixodes ricinus, the vector of Lyme disease. International Journal for Parasitology, 34, 943–950. [CrossRef] [PubMed] [Google Scholar]
  17. De Meeûs T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Bousses S, Renaud F. 2007. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infection, Genetics and Evolution, 7, 308–332. [CrossRef] [PubMed] [Google Scholar]
  18. De Meeûs T, Guégan JF, Teriokhin AT. 2009. MultiTest V. 1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinformatics, 10, 1–8. [CrossRef] [PubMed] [Google Scholar]
  19. De Meeûs T. 2018. Revisiting FIS, FST, Wahlund effects, and null alleles. Journal of Heredity, 109, 446–456. [CrossRef] [PubMed] [Google Scholar]
  20. De Meeûs T. 2021. Initiation à la génétique des populations naturelles: Application aux parasites et à leurs vecteurs – 2ème édition revue et augmentée. Marseille: IRD Éditions. 384 p. [Google Scholar]
  21. De Meeûs T, Chan CT, Ludwig JM, Tsao JI, Patel J, Bhagatwala J, Beati L. 2021. Deceptive combined effects of short allele dominance and stuttering: An example with Ixodes scapularis, the main vector of Lyme disease in the USA. Peer Community Journal, 1, e40. [CrossRef] [Google Scholar]
  22. De Meeûs T, Noûs C. 2022. A simple procedure to detect, test for the presence of stuttering, and cure stuttered data with spreadsheet programs. Peer Community Journal, 2, e50. [CrossRef] [Google Scholar]
  23. De Meeûs T, Noûs C. 2023. A new and almost perfectly accurate approximation of the eigenvalue effective population size of a dioecious population: comparisons with other estimates and detailed proofs. Peer Community Journal, 3, e51. [CrossRef] [Google Scholar]
  24. Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39, 1–22. [CrossRef] [Google Scholar]
  25. Desquesnes M, Bouhsira E, Chalermwong P, Drosne L, Duvallet G, Franc M, Gimonneau G, Grimaud YRP, Guillet P, Himeidan YE. 2021. Insecticide-impregnated screens used under “multi-target method” for haematophagous fly control in cattle: a proof of concept, in Innovative strategies for vector control – Ecology and control of vector-borne diseases, vol. 6, Koenraadt CJM, Spitzen J, Takken W, Editors. Wageningen Academic Publishers. p. 91–105. [CrossRef] [Google Scholar]
  26. Desquesnes M, Gonzatti M, Sazmand A, Thévenon S, Bossard G, Boulangé A, Gimonneau G, Truc P, Herder S, Ravel S, Denis S, Vincent J, Sathaporn J, Philippe J, Philippe S, David B. 2022. A review on the diagnosis of animal trypanosomoses. Parasites & Vectors, 15, 24. [CrossRef] [PubMed] [Google Scholar]
  27. Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR. 2014. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209–214. [CrossRef] [PubMed] [Google Scholar]
  28. Fox J. 2005. The R commander: A basic-statistics graphical user interface to R. Journal of Statistical Software, 14, 1–42. [Google Scholar]
  29. Fox J. 2007. Extending the R Commander by “plug-in” packages. R News, 7, 46–52. [Google Scholar]
  30. Frontier S. 1976. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé. Journal of Experimental Marine Biology and Ecology, 25, 67–75. [CrossRef] [Google Scholar]
  31. Goudet J, De Meeüs T, Day AJ, Gliddon CJ. 1994. The different levels of population structuring of the dogwhelk, Nucella lapillus, along the south Devon coast, in Genetics and Evolution of Aquatic Organisms, Beaumont AR, Editor. Chapman & Hall: London. p. 81–95. [Google Scholar]
  32. Goudet J. 1995. FSTAT (version 1.2): A computer program to calculate F-statistics. Journal of Heredity, 86, 485–486. [CrossRef] [Google Scholar]
  33. Goudet J, Raymond M, de Meeüs T, Rousset F. 1996. Testing differentiation in diploid populations. Genetics, 144, 1933–1940. [PubMed] [Google Scholar]
  34. Goudet J. 2003. Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Available at http://www.t-de-meeus.fr/Programs/Fstat294.zip, Updated from Goudet (1995). [Google Scholar]
  35. Gouteux J, Laveissiere C, Boreham P. 1982. Écologie des glossines en secteur pré-forestier de Côte d’Ivoire. 2. Les préférences trophiques de Glossina pallicera et G. nigrofusca. Comparaison avec G. palpalis et implications épidémiologiques. Cahiers de l’ORSTOM, Série Entomologie Médicale et Parasitologie, 20, 109–124. [Google Scholar]
  36. Guinand B. 1996. Use of a multivariate model using allele frequency distributions to analyse patterns of genetic differentiation among populations. Biological Journal of the Linnean Society, 58, 173–195. [CrossRef] [Google Scholar]
  37. Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M, Solano P, Garcia A, Courtin D, Laveissière C, Lingue K. 2012. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Neglected Tropical Diseases, 6, e1691. [CrossRef] [PubMed] [Google Scholar]
  38. Jones OR, Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10, 551–555. [CrossRef] [Google Scholar]
  39. Kaba D, Djohan V, Berté D, Ta BTD, Selby R, Kouadio KADM, Coulibaly B, Traoré G, Rayaisse JB, Fauret P, Jamonneau V, Lingue K, Solano P, Torr SJ, Courtin F. 2021. Use of vector control to protect people from sleeping sickness in the focus of Bonon (Côte d’Ivoire). PLOS Neglected Tropical Diseases, 15, e0009404. [CrossRef] [PubMed] [Google Scholar]
  40. Kaba D, Koffi M, Kouakou L, N’Gouan EK, Djohan V, Courtin F, N’Djetchi MK, Coulibaly B, Adingra GP, Berté D, Ta BTD, Koné M, Traoré BM, Sutherland SA, Crump RE, Huang CI, Madan J, Bessell PR, Barreaux A, Jamonneau V. 2023. Towards the sustainable elimination of gambiense human African trypanosomiasis in Côte d’Ivoire using an integrated approach. PLOS Neglected Tropical Diseases, 17, 1–25. [Google Scholar]
  41. Kaboré J, Koffi M, Bucheton B, MacLeod A, Duffy C, Ilboudo H, Camara M, De Meeûs T, Belem AMG, Jamonneau V. 2011. First evidence that parasite infecting apparent aparasitemic serological suspects in human African trypanosomiasis are Trypanosoma brucei gambiense and are similar to those found in patients. Infection, Genetics and Evolution, 11, 1250–1255. [CrossRef] [PubMed] [Google Scholar]
  42. Kagbadouno MS, Séré M, Ségard A, Camara AD, Camara M, Bucheton B, Bart JM, Courtin F, De Meeûs T, Ravel S. 2024. Population genetics of Glossina palpalis gambiensis in the sleeping sickness focus of Boffa (Guinea) before and after eight years of vector control: No effect of control despite a significant decrease of human exposure to the disease. Peer Community Journal, 4, e21. [CrossRef] [Google Scholar]
  43. Keck N, Herder S, Kaba D, Solano P, Gomez J, Cuny G, Davoust B. 2009. Epidemiological study of canine trypanosomosis in an urban area of Ivory Coast. Parasite, 16, 305–308. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Koffi M, Solano P, Denizot M, Courtin D, Garcia A, Lejon V, Büscher P, Cuny G, Jamonneau V. 2006. Aparasitemic serological suspects in Trypanosoma brucei gambiense human African trypanosomiasis: A potential human reservoir of parasites? Acta Tropica, 98, 183–188. [CrossRef] [PubMed] [Google Scholar]
  45. Koffi M, De Meeûs T, Bucheton B, Solano P, Camara M, Kaba D, Cuny G, Ayala FJ, Jamonneau V. 2009. Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in Western Africa. Proceedings of the National Academy of Sciences, 106, 209–214. [CrossRef] [PubMed] [Google Scholar]
  46. Konan YJR, Berté D, Ta BTD, Demoncheaux JP, Sauzet S, Watier-Grillot S, Kouadio KADM, N’dri L, Coulibaly B, Solano P. 2023. Tsetse fly ecology and risk of transmission of African trypanosomes related to a protected forest area at a military base in the city of Abidjan, Côte d’Ivoire, Parasite, 30, 36. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Lamour T, Ulmer P, Watier S, Ginesta J. 2004. Trypanosomose dans un effectif de chiens militaires en Côte d’Ivoire. Bulletin de l’Académie Vétérinaire de France, 157, 67–74. [Google Scholar]
  48. Laveissière C, Grébaut P, Recherches sur les pièges à glossines (Diptera: Glossinidae). Mise au point d’un modèle économique: Le piège «Vavoua», Tropical Medicine and Parasitology, 41, 185–192. [PubMed] [Google Scholar]
  49. Laveissière C, Grébaut P, Herder S, Penchenier L. 2000. Les glossines vectrices de la trypanosomiase humaine. Marseille: IRD Éditions. 246 p. [Google Scholar]
  50. Laveissière C, Garcia A, Sané B. 2003. Lutte contre la maladie du sommeil et soins de santé primaire. Marseille: IRD Éditions, 243 p. [Google Scholar]
  51. Luna C, Bonizzoni M, Cheng Q, Robinson AS, Aksoy S, Zheng L. 2001. Microsatellite polymorphism in tsetse flies (Diptera: Glossinidae). Journal of Medical Entomology, 38, 376–381. [CrossRef] [PubMed] [Google Scholar]
  52. Mahamat MH, Peka M, Rayaisse JB, Rock KS, Toko MA, Darnas J, Brahim GM, Alkatib AB, Yoni W, Tirados I. 2017. Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad). PLoS Neglected Tropical Diseases, 11, e0005792. [CrossRef] [PubMed] [Google Scholar]
  53. Manangwa O, De Meeûs T, Grébaut P, Ségard A, Byamungu M, Ravel S. 2019. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania. Molecular Ecology Resources, 19, 757–772. [CrossRef] [PubMed] [Google Scholar]
  54. Meirmans PG. 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution, 60, 2399–2402. [CrossRef] [PubMed] [Google Scholar]
  55. Melachio Tanekou TT, Bouaka Tsakeng CU, Tirados I, Acho A, Bigoga J, Wondji CS, Njiokou F. 2023. Impact of a small-scale tsetse fly control operation with deltamethrin impregnated “Tiny Targets” on tsetse density and trypanosomes’ circulation in the Campo sleeping sickness focus of South Cameroon. PLOS Neglected Tropical Diseases, 17, e0011802. [CrossRef] [PubMed] [Google Scholar]
  56. Mitchell C, Leigh S, Alphey L, Haerty W, Chapman T. 2022. Reproductive interference and satyrisation: Mechanisms, outcomes and potential use for insect control. Journal of Pest Science, 95, 1023–1036. [CrossRef] [PubMed] [Google Scholar]
  57. N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, Courtin F, Coulibaly B, Fauret P, Kouakou L. 2017. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Cote d’Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Neglected Tropical Diseases, 11, e0005993. [CrossRef] [PubMed] [Google Scholar]
  58. Ndung’u JM, Boulangé A, Picado A, Mugenyi A, Mortensen A, Hope A, Mollo BG, Bucheton B, Wamboga C, Waiswa C. 2020. Trypa-NO! Contributes to the elimination of gambiense human African trypanosomiasis by combining tsetse control with “screen, diagnose and treat” using innovative tools and strategies. PLoS Neglected Tropical Diseases, 14, e0008738. [CrossRef] [PubMed] [Google Scholar]
  59. Nekpeni E, Dagnogo M, Eouzan JP. 1989. Détermination de la limite géographique entre deux sous-espèces de glossines en Côte-d’Ivoire: Glossina palpalis palpalis (Robineau-Desvoidy, 1830) et G. p. Gambiensis (Vanderplank, 1949). Tropical Medicine and Parasitology, 40, 12–15. [PubMed] [Google Scholar]
  60. Nomura T. 2008. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evolutionary Applications, 1, 462–474. [CrossRef] [PubMed] [Google Scholar]
  61. OMS. 2021. Elimination of Human African Trypanosomiasis as public health problem. Weekly Epidemiological Record, 96, 196. [Google Scholar]
  62. Peel D, Waples RS, Macbeth G, Do C, Ovenden JR. 2013. Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Molecular Ecology Resources, 13, 243–253. [CrossRef] [PubMed] [Google Scholar]
  63. Piry S, Luikart G, Cornuet JM. 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity, 90, 502–503. [CrossRef] [Google Scholar]
  64. Ravel S, De Meeûs T, Dujardin JP, Zeze D, Gooding R, Dusfour I, Sané B, Cuny G, Solano P. 2007. The tsetse fly Glossina palpalis palpalis is composed of several genetically differentiated small populations in the sleeping sickness focus of Bonon, Côte d’Ivoire. Infection, Genetics and Evolution, 7, 116–125. [CrossRef] [PubMed] [Google Scholar]
  65. Ravel S, Séré M, Manangwa O, Kagbadouno M, Mahamat MH, Shereni W, Okeyo WA, Argiles-Herrero R, De Meeûs T. 2020. Developing and quality testing of microsatellite loci for four species of Glossina. Infection, Genetics and Evolution, 85, 104515. [CrossRef] [PubMed] [Google Scholar]
  66. Rayaisse JB, Esterhuizen J, Tirados I, Kaba D, Salou E, Diarrassouba A, Vale GA, Lehane MJ, Torr SJ, Solano P. 2011. Towards an optimal design of target for tsetse control: Comparisons of novel targets for the control of Palpalis group tsetse in West Africa. PLoS Neglected Tropical Diseases, 5, e1332. [CrossRef] [PubMed] [Google Scholar]
  67. Rayaisse JB, Courtin F, Mahamat MH, Chérif M, Yoni W, Gadjibet NM, Peka M, Solano P, Torr SJ, Shaw AP. 2020. Delivering “tiny targets” in a remote region of southern Chad: A cost analysis of tsetse control in the Mandoul sleeping sickness focus. Parasites & Vectors, 13, 419. [CrossRef] [PubMed] [Google Scholar]
  68. Robertson A, Hill WG. 1984. Deviations from Hardy-Weinberg proportions: Sampling variances and use in estimation of inbreeding coefficients. Genetics, 107, 703–718. [CrossRef] [PubMed] [Google Scholar]
  69. Seck MT, Fall AG, Ciss M, Bakhoum MT, Sall B, Gaye AM, Gimonneau G, Bassène MD, Lancelot R, Vreysen MJ. 2024. Animal trypanosomosis eliminated in a major livestock production region in Senegal following the eradication of a tsetse population. Parasite, 31, 11. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  70. She JX, Autem M, Kotulas G, Pasteur N, Bonhomme F. 1987. Multivariate analysis of genetic exchanges between Solea aegyptiaca and Solea senegalensis (Teleosts, Soleidae). Biological Journal of the Linnean Society, 32, 357–371. [CrossRef] [Google Scholar]
  71. Tirados I, Esterhuizen J, Kovacic V, Mangwiro TNC, Vale GA, Hastings I, Solano P, Lehane MJ, Torr SJ. 2015. Tsetse control and Gambian sleeping sickness; implications for control strategy. PLoS Neglected Tropical Diseases, 9, e0003822. [CrossRef] [PubMed] [Google Scholar]
  72. Tirados I, Hope A, Selby R, Mpembele F, Miaka EM, Boelaert M, Lehane MJ, Torr SJ, Stanton MC. 2020. Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector of Human African trypanosomiasis in the Democratic Republic of the Congo. PLoS Neglected Tropical Diseases, 14, e0008270. [CrossRef] [PubMed] [Google Scholar]
  73. Traoré BM, Koffi M, N’Djetchi MK, Kaba D, Kaboré J, Ilboudo H, Ahouty BA, Koné M, Coulibaly B, Konan T. 2021. Free-ranging pigs identified as a multi-reservoir of Trypanosoma brucei and Trypanosoma congolense in the Vavoua area, a historical sleeping sickness focus of Côte d’Ivoire. PLoS Neglected Tropical Diseases, 15, e0010036. [CrossRef] [PubMed] [Google Scholar]
  74. Vitalis R, Couvet D. 2001. Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics, 157, 911–925. [CrossRef] [PubMed] [Google Scholar]
  75. Vitalis R. 2002. Estim 1.2-2: A computer program to infer population parameters from one- and two-locus gene identity probabilities, updated from Vitalis and Couvet (2001). Molecular Ecology Notes, 1, 354–356. [CrossRef] [Google Scholar]
  76. Wang J. 2009. A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology, 18, 2148–2164. [CrossRef] [PubMed] [Google Scholar]
  77. Waples RS. 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167–184. [CrossRef] [Google Scholar]
  78. Watier-Grillot S, Herder S, Marié JL, Cuny G, Davoust B. 2013. Chemoprophylaxis and treatment of African canine trypanosomosis in French military working dogs: A retrospective study. Veterinary Parasitology, 194, 1–8. [CrossRef] [PubMed] [Google Scholar]
  79. Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370. [Google Scholar]
  80. Williams BG, Dransfield RD, Brightwell R. 1990. Tsetse fly (Diptera: Glossinidae) population dynamics and the estimation of mortality rates from life-table data. Bulletin of Entomological Research, 80, 479–485. [CrossRef] [Google Scholar]
  81. Wright S. 1951. The genetical structure of populations. Annals of Eugenics, 15, 323–354. [Google Scholar]
  82. Wright S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420. [CrossRef] [Google Scholar]
  83. Yoni W, Bila C, Bouyer J, Desquesnes M, Kaboré I. 2005. Étude des glossines. La dissection des glossines ou mouches tsé-tsé. Santé animale en Afrique de l’Ouest. Recommandations Techniques, 23, 12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.