Open Access
Issue
Parasite
Volume 31, 2024
Article Number 53
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2024053
Published online 06 September 2024
  1. Abdullah H, Ahmad MF, Maniyam MN, Azman HH, Yaacob NS. 2023. Biodegradation of cholestrol by selected Malaysian Rhodococcus spp, in: AIP conference proceedings. AIP Publishing: Bestari Jaya, Malaysia. [Google Scholar]
  2. Bell HN, Rebernick RJ, Goyert J, Singhal R, Kuljanin M, Kerk SA, Huang W, Das NK, Andren A, Solanki S, Miller SL, Todd PK, Fearon ER, Lyssiotis CA, Gygi SP, Mancias JD, Shah YM. 2022. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell, 40(2), 185–200. [CrossRef] [PubMed] [Google Scholar]
  3. Bosman FT. 2018. Book review—Rosai and Ackerman’s surgical pathology-2 volume set. Virchows Archiv, 473, 389–390. [CrossRef] [Google Scholar]
  4. Castro-Abril H, Heras J, Del Barrio J, Paz L, Alcaine C, Aliacar MP, Garzon-Alvarado D, Doblare M, Ochoa I. 2023. The role of mechanical properties and structure of Type I collagen hydrogels on colorectal cancer cell migration. Macromolecular Bioscience, 23(10), e2300108. [CrossRef] [PubMed] [Google Scholar]
  5. Chen B, Fu SW, Lu L, Zhao H. 2019. A preliminary study of biliary microbiota in patients with bile duct stones or distal cholangiocarcinoma. BioMed Research International, 2019, 1092563. [PubMed] [Google Scholar]
  6. Chen R, Li X, Ding J, Wan J, Zhang X, Jiang X, Duan S, Hu X, Gao Y, Sun B, Lu X, Wang R, Cheng Y, Zhang X, Han S. 2023. Profiles of biliary microbiota in biliary obstruction patients with Clonorchis sinensis infection. Frontiers in Cellular and Infection Microbiology, 13, 1281745. [CrossRef] [PubMed] [Google Scholar]
  7. Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. 2019. Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues. Frontiers in Microbiology, 10, 1261. [CrossRef] [PubMed] [Google Scholar]
  8. Cheng C, Wang Z, Wang J, Ding C, Sun C, Liu P, Xu X, Liu Y, Chen B, Gu B. 2020. Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Translational Lung Cancer Research, 9(3), 693–704. [CrossRef] [PubMed] [Google Scholar]
  9. Chng KR, Chan SH, Ng AHQ, Li C, Jusakul A, Bertrand D, Wilm A, Choo SP, Tan DMY, Lim KH, Soetinko R, Ong CK, Duda DG, Dima S, Popescu I, Wongkham C, Feng Z, Yeoh KG, Teh BT, Yongvanit P, Wongkham S, Bhudhisawasdi V, Khuntikeo N, Tan P, Pairojkul C, Ngeow J, Nagarajan N. 2016. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in Opisthorchis viverrini associated cholangiocarcinoma. EBioMedicine, 8, 195–202. [CrossRef] [PubMed] [Google Scholar]
  10. Choe JW, Lee JM, Hyun JJ, Lee HS. 2021. Analysis on microbial profiles & components of bile in patients with recurrent CBD Stones after endoscopic CBD stone removal: a preliminary study. Journal of Clinical Medicine, 10(15), 3303. [CrossRef] [PubMed] [Google Scholar]
  11. Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. 2021. Microbiome and cancer. Cancer Cell, 39(10), 1317–1341. [CrossRef] [PubMed] [Google Scholar]
  12. Elvevi A, Laffusa A, Gallo C, Invernizzi P, Massironi S. 2023. Any role for microbiota in cholangiocarcinoma? A comprehensive review Cells, 12(3), 370. [CrossRef] [PubMed] [Google Scholar]
  13. Gasaly N, de Vos P, Hermoso MA. 2021. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Frontiers in Immunology, 12, 658354. [CrossRef] [PubMed] [Google Scholar]
  14. Geramizadeh B. 2020. Precursor lesions of cholangiocarcinoma: a clinicopathologic review. Clinical Pathology, 13, 2632010X20925045. [Google Scholar]
  15. Hov JR, Karlsen TH. 2023. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nature Reviews Gastroenterology & Hepatology, 20(3), 135–154. [CrossRef] [PubMed] [Google Scholar]
  16. Hu X, Li D, Qiao Y, Wang X, Zhang Q, Zhao W, Huang L. 2020. Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. International Journal of Biological Macromolecules, 145, 646–654. [CrossRef] [PubMed] [Google Scholar]
  17. Itthitaetrakool U, Pinlaor P, Pinlaor S, Chomvarin C, Dangtakot R, Chaidee A, Wilailuckana C, Sangka A, Lulitanond A, Yongvanit P. 2016. Chronic Opisthorchis viverrini infection changes the liver microbiome and promotes Helicobacter growth. PLoS One, 11(11), e0165798. [CrossRef] [PubMed] [Google Scholar]
  18. Jeon Y, Kwon SM, Rhee H, Yoo JE, Chung T, Woo HG, Park YN. 2023. Molecular and radiopathologic spectrum between HCC and intrahepatic cholangiocarcinoma. Hepatology, 77(1), 92–108. [PubMed] [Google Scholar]
  19. Kim JY, Kim EM, Yi MH, Lee J, Lee S, Hwang Y, Yong D, Sohn WM, Yong TS. 2019. Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice. Parasitology Research, 118(2), 693–699. [CrossRef] [PubMed] [Google Scholar]
  20. Lacave G, Coutard A, Troche G, Augusto S, Pons S, Zuber B, Laurent V, Amara M, Couzon B, Bedos JP, Pangon B, Grimaldi D. 2016. Endocarditis caused by Streptococcus canis: an emerging zoonosis? Infection, 44(1), 111–114. [CrossRef] [PubMed] [Google Scholar]
  21. Lederman Z, Leskes H, Brosh-Nissimov T. 2020. One Health and Streptococcus canis in the emergency department: a case of cellulitis and bacteremia in an immunocompromised patient treated with Etanercept. Journal of Emergency Medicine, 58(3), e129–e132. [CrossRef] [Google Scholar]
  22. Li KJ, Chen ZL, Huang Y, Zhang R, Luan XQ, Lei TT, Chen L. 2019. Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respiratory Research, 20(1), 272. [CrossRef] [PubMed] [Google Scholar]
  23. Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. 2021. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes, 13(1), 1847629. [CrossRef] [PubMed] [Google Scholar]
  24. Liwinski T, Zenouzi R, John C, Ehlken H, Ruhlemann MC, Bang C, Groth S, Lieb W, Kantowski M, Andersen N, Schachschal G, Karlsen TH, Hov JR, Rosch T, Lohse AW, Heeren J, Franke A, Schramm C. 2020. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut, 69(4), 665–672. [CrossRef] [PubMed] [Google Scholar]
  25. Long S, Yang Y, Shen C, Wang Y, Deng A, Qin Q, Qiao L. 2020. Metaproteomics characterizes human gut microbiome function in colorectal cancer. NPJ Biofilms Microbiomes, 6(1), 14. [CrossRef] [PubMed] [Google Scholar]
  26. Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY. 2005. Clonorchiasis: a key foodborne zoonosis in China. Lancet Infectious Diseases, 5(1), 31–41. [CrossRef] [Google Scholar]
  27. Malisova B, Santavy P, Loveckova Y, Hladky B, Kotaskova I, Pol J, Lonsky V, Nemec P, Freiberger T. 2019. Human native endocarditis caused by Streptococcus canis-a case report. APMIS, 127(1), 41–44. [CrossRef] [PubMed] [Google Scholar]
  28. Molinero N, Ruiz L, Milani C, Gutierrez-Diaz I, Sanchez B, Mangifesta M, Segura J, Cambero I, Campelo AB, Garcia-Bernardo CM, Cabrera A, Rodriguez JI, Gonzalez S, Rodriguez JM, Ventura M, Delgado S, Margolles A. 2019. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome, 7(1), 100. [CrossRef] [PubMed] [Google Scholar]
  29. Na BK, Pak JH, Hong SJ. 2020. Clonorchis sinensis and clonorchiasis. Acta Tropica, 203, 105309. [CrossRef] [PubMed] [Google Scholar]
  30. Pagnossin D, Smith A, Oravcova K, Weir W. 2022. Streptococcus canis, the underdog of the genus. Veterinary Microbiology, 273, 109524. [CrossRef] [PubMed] [Google Scholar]
  31. Pagnossin D, Weir W, Smith A, Fuentes M, Coelho J, Oravcova K. 2023. Streptococcus canis genomic epidemiology reveals the potential for zoonotic transfer. Microbial Genomics, 9(3), 000974. [CrossRef] [Google Scholar]
  32. Pak JH, Lee JY, Jeon BY, Dai F, Yoo WG, Hong SJ. 2019. Cytokine Production in Cholangiocarcinoma cells in response to Clonorchis sinensis excretory-secretory products and their putative protein components. Korean Journal of Parasitology, 57(4), 379–387. [CrossRef] [PubMed] [Google Scholar]
  33. Pakharukova MY, Lishai EA, Zaparina O, Baginskaya NV, Hong SJ, Sripa B, Mordvinov VA. 2023. Opisthorchis viverrini, Clonorchis sinensis and Opisthorchis felineus liver flukes affect mammalian host microbiome in a species-specific manner. PLoS Neglected Tropical Diseases, 17(2), e0011111. [CrossRef] [PubMed] [Google Scholar]
  34. Pereira P, Aho V, Arola J, Boyd S, Jokelainen K, Paulin L, Auvinen P, Farkkila M. 2017. Bile microbiota in primary sclerosing cholangitis: impact on disease progression and development of biliary dysplasia. PLoS One, 12(8), e0182924. [CrossRef] [PubMed] [Google Scholar]
  35. Pereira SG, Moura J, Carvalho E, Empadinhas N. 2017. Microbiota of chronic diabetic wounds: ecology, impact, and potential for innovative treatment strategies. Frontiers in Microbiology, 8, 1791. [CrossRef] [PubMed] [Google Scholar]
  36. Plieskatt JL, Deenonpoe R, Mulvenna JP, Krause L, Sripa B, Bethony JM, Brindley PJ. 2013. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB Journal, 27(11), 4572–4584. [CrossRef] [PubMed] [Google Scholar]
  37. Prakobwong S, Charoensuk L, Hiraku Y, Pinlaor P, Pairojkul C, Mairiang E, Sithithaworn P, Yongvanit P, Khuntikeo N, Pinlaor S. 2012. Plasma hydroxyproline, MMP-7 and collagen I as novel predictive risk markers of hepatobiliary disease-associated cholangiocarcinoma. International Journal of Cancer, 131(4), E416–E424. [CrossRef] [PubMed] [Google Scholar]
  38. Qi Y, Hu J, Liang J, Hu X, Ma N, Xiang B. 2022. Clonorchis sinensis infection contributes to hepatocellular carcinoma progression in rat. Parasitology Research, 121(12), 3403–3415. [CrossRef] [PubMed] [Google Scholar]
  39. Qian MB, Utzinger J, Keiser J, Zhou XN. 2016. Clonorchiasis. Lancet, 387(10020), 800–810. [CrossRef] [PubMed] [Google Scholar]
  40. Qian MB, Zhou XN. 2021. Clonorchis sinensis. Trends in Parasitology, 37(11), 1014–1015. [CrossRef] [PubMed] [Google Scholar]
  41. Rao B, Ren T, Wang X, Wang H, Zou Y, Sun Y, Liu S, Ren Z, Yu Z. 2021. Dysbiosis in the human microbiome of cholangiocarcinoma. Frontiers in Physiology, 12, 715536. [CrossRef] [PubMed] [Google Scholar]
  42. Saab M, Mestivier D, Sohrabi M, Rodriguez C, Khonsari MR, Faraji A, Sobhani I. 2021. Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma. PLoS One, 16(3), e0247798. [CrossRef] [PubMed] [Google Scholar]
  43. Saltykova IV, Petrov VA, Logacheva MD, Ivanova PG, Merzlikin NV, Sazonov AE, Ogorodova LM, Brindley PJ. 2016. Biliary microbiota, gallstone disease and infection with Opisthorchis felineus. PLoS Neglected Tropical Diseases, 10(7), e0004809. [CrossRef] [PubMed] [Google Scholar]
  44. Sanchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordonez R, Medina JA, Gomez-Millan J, Queipo-Ortuno MI. 2020. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers, 12(6), 1406. [CrossRef] [PubMed] [Google Scholar]
  45. Sarkar P, Malik S, Laha S, Das S, Bunk S, Ray JG, Chatterjee R, Saha A. 2021. Dysbiosis of oral microbiota during oral squamous cell carcinoma development. Frontiers in Oncology, 11, 614448. [CrossRef] [PubMed] [Google Scholar]
  46. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. 2021. The microbiome and human cancer. Science, 371(6536), eabc4552. [CrossRef] [PubMed] [Google Scholar]
  47. Somalinga V, Mohn WW. 2013. Rhodococcus jostii porin A (RjpA) functions in cholate uptake. Applied and Environmental Microbiology, 79(19), 6191–6193. [CrossRef] [PubMed] [Google Scholar]
  48. Su H, Karin M. 2023. Collagen architecture and signaling orchestrate cancer development. Trends in Cancer, 9(9), 764–773. [CrossRef] [PubMed] [Google Scholar]
  49. Subbaiya R, Preetha L, Gayathri S, Swarnalatha A, Selvam MM. 2014. Synthesis and characterization of silver nanoparticles from Rhodococcus-2891 and its anti tumor activity against Lung cancer cell line (A549), in: 2014 international conference on science engineering and management research (ICSEMR). IEEE: Chennai, India. [Google Scholar]
  50. Tango CN, Seo SS, Kwon M, Lee DO, Chang HK, Kim MK. 2020. Taxonomic and functional differences in cervical microbiome associated with cervical cancer development. Scientific Reports, 10(1), 9720. [CrossRef] [PubMed] [Google Scholar]
  51. Taniyama D, Abe Y, Sakai T, Kikuchi T, Takahashi T. 2017. Human case of bacteremia caused by Streptococcus canis sequence type 9 harboring the scm gene. IDCases, 7, 48–52. [CrossRef] [PubMed] [Google Scholar]
  52. Tiemin P, Fanzheng M, Peng X, Jihua H, Ruipeng S, Yaliang L, Yan W, Junlin X, Qingfu L, Zhefeng H, Jian L, Zihao G, Guoxing L, Boshi S, Ming Z, Qinghui M, Desen L, Lianxin L. 2020. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. Journal of Hepatology, 72(4), 761–773. [CrossRef] [PubMed] [Google Scholar]
  53. Tyc O, Jansen C, Schierwagen R, Uschner FE, Israelsen M, Klein S, Ortiz C, Strassburg CP, Zeuzem S, Gu W, Torres S, Praktiknjo M, Kersting S, Langheinrich M, Nattermann J, Servant F, Arumugam M, Krag A, Lelouvier B, Weismuller TJ, Trebicka J. 2020. Variation in bile microbiome by the etiology of cholestatic liver disease. Journal of Liver Transplantation, 26(12), 1652–1657. [CrossRef] [PubMed] [Google Scholar]
  54. Uddin MH, Choi MH, Kim WH, Jang JJ, Hong ST. 2015. Involvement of PSMD10, CDK4, and tumor suppressors in development of intrahepatic cholangiocarcinoma of Syrian golden hamsters induced by Clonorchis sinensis and N-Nitrosodimethylamine. PLoS Neglected Tropical Diseases, 9(8), e0004008. [CrossRef] [PubMed] [Google Scholar]
  55. Wang D, Young ND, Korhonen PK, Gasser RB. 2018. Clonorchis sinensis and clonorchiasis: the relevance of exploring genetic variation. Advances in Parasitology, 100, 155–208. [CrossRef] [PubMed] [Google Scholar]
  56. Yoo WG, Sohn WM, Na BK. 2022. Current status of Clonorchis sinensis and clonorchiasis in Korea: epidemiological perspectives integrating the data from human and intermediate hosts. Parasitology, 149(10), 1296–1305. [CrossRef] [PubMed] [Google Scholar]
  57. Zaidi SMH, Eranki A. 2019. Streptococcus canis bacteremia in a renal transplant recipient. Journal of Investigative Medicine High Impact Case Reports, 7, 2324709619834592. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.