Open Access
Issue |
Parasite
Volume 31, 2024
|
|
---|---|---|
Article Number | 51 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/parasite/2024051 | |
Published online | 29 August 2024 |
- Amadi B, Mwiya M, Sianongo S, Payne L, Watuka A, Katubulushi M, Kelly P. 2009. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial. BMC Infectious Diseases, 9, 195. [CrossRef] [PubMed] [Google Scholar]
- Bhat N, Joe A, PereiraPerrin M, Ward HD. 2007. Cryptosporidium p30, a galactose/N-acetylgalactosamine-specific lectin, mediates infection in vitro. Journal of Biological Chemistry, 282(48), 34877–34887. [CrossRef] [Google Scholar]
- Cai X, Woods KM, Upton SJ, Zhu G. 2005. Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro. Antimicrobial Agents and Chemotherapy, 49(11), 4437–4442. [CrossRef] [PubMed] [Google Scholar]
- Cevallos AM, Bhat N, Verdon R, Hamer DH, Stein B, Tzipori S, Pereira ME, Keusch GT, Ward HD. 2000. Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infection and Immunity, 68(9), 5167–5175. [CrossRef] [PubMed] [Google Scholar]
- Cui Z, Wang L, Wang Y, Li J, Wang R, Sun M, Zhang L. 2020. Cryptosporidium parvum gp40/15 is associated with the parasitophorous vacuole membrane and is a potential vaccine target. Microorganisms, 8(3), 363. [CrossRef] [PubMed] [Google Scholar]
- Desai AN. 2020. Cryptosporidiosis. Journal of the American Medical Association, 323(3), 288. [CrossRef] [PubMed] [Google Scholar]
- Desai MA, Burnett JP, Mayne NG, Schoepp DD. 1995. Cloning and expression of a human metabotropic glutamate receptor 1 alpha: enhanced coupling on co-transfection with a glutamate transporter. Molecular Pharmacology, 48(4), 648–657. [PubMed] [Google Scholar]
- Fei J, Wu H, Su J, Jin C, Li N, Guo Y, Feng Y, Xiao L. 2018. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasites & Vectors, 11(1), 312. [CrossRef] [PubMed] [Google Scholar]
- Gao X, Yin J, Wang D, Li X, Zhang Y, Wang C, Zhang Y, Zhu G. 2021. Discovery of new microneme proteins in Cryptosporidium parvum and implication of the roles of a rhomboid membrane protein (CpROM1) in host-parasite interaction. Frontiers in Veterinary Science, 8, 778560. [CrossRef] [PubMed] [Google Scholar]
- Guérin A, Roy NH, Kugler EM, Berry L, Burkhardt JK, Shin JB, Striepen B. 2021. Cryptosporidium rhoptry effector protein ROP1 injected during invasion targets the host cytoskeletal modulator LMO7. Cell Host Microbe, 29(9), 1407–1420. [CrossRef] [PubMed] [Google Scholar]
- Guo F, Zhang H, Payne HR, Zhu G. 2016. Differential gene expression and protein localization of Cryptosporidium parvum fatty Acyl-CoA synthetase isoforms. Journal of Eukaryotic Microbiology, 63(2), 233–246. [CrossRef] [PubMed] [Google Scholar]
- Itin C, Kappeler F, Linstedt AD, Hauri HP. 1995. A novel endocytosis signal related to the KKXX ER-retrieval signal. EMBO Journal, 14(10), 2250–2256. [CrossRef] [Google Scholar]
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. [CrossRef] [PubMed] [Google Scholar]
- Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46(D1), 493–496. [Google Scholar]
- Li X, Yin J, Wang D, Gao X, Zhang Y, Wu M, Zhu G. 2022. The mucin-like, secretory type-I transmembrane glycoprotein GP900 in the apicomplexan Cryptosporidium parvum is cleaved in the secretory pathway and likely plays a lubrication role. Parasites & Vectors, 15(1), 170. [CrossRef] [PubMed] [Google Scholar]
- Lippuner C, Ramakrishnan C, Basso WU, Schmid MW, Okoniewski M, Smith NC, Hässig M, Deplazes P, Hehl AB. 2018. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites. International Journal for Parasitology, 48(6), 413–422. [CrossRef] [PubMed] [Google Scholar]
- Ludington JG, Ward HD. 2016. The Cryptosporidium parvum C-type lectin CpClec mediates infection of intestinal epithelial cells via interactions with sulfated proteoglycans. Infection and Immunity, 84(5), 1593–1602. [CrossRef] [PubMed] [Google Scholar]
- Matos LVS, McEvoy J, Tzipori S, Bresciani KDS, Widmer G. 2019. The transcriptome of Cryptosporidium oocysts and intracellular stages. Scientific Reports, 9(1), 7856. [CrossRef] [PubMed] [Google Scholar]
- Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. 2012. The Cryptosporidium parvum transcriptome during in vitro development. PLoS One, 7(3), e31715. [CrossRef] [PubMed] [Google Scholar]
- Neve EP, Svensson K, Fuxe J, Pettersson RF. 2003. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Experimental Cell Research, 288(1), 70–83. [CrossRef] [PubMed] [Google Scholar]
- Ryan U, Feng Y, Fayer R, Xiao L. 2021a. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia – a 50 year perspective (1971–2021). International Journal for Parasitology, 51(13–14), 1099–1119. [CrossRef] [PubMed] [Google Scholar]
- Ryan U, Zahedi A, Feng Y, Xiao L. 2021b. An update on zoonotic Cryptosporidium species and genotypes in humans. Animals, 11, 3307. [CrossRef] [PubMed] [Google Scholar]
- Saouros S, Edwards-Jones B, Reiss M, Sawmynaden K, Cota E, Simpson P, Dowse TJ, Jäkle U, Ramboarina S, Shivarattan T, Matthews S, Soldati-Favre D. 2005. A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex. Journal of Biological Chemistry, 280(46), 38583–38591. [CrossRef] [Google Scholar]
- Sharon N, Lis H. 2004. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53r–62r. [Google Scholar]
- Shimada O, Hara-Kuge S, Yamashita K, Tosaka-Shimada H, Yanchao L, Yongnan L, Atsumi S, Ishikawa H. 2003. Clusters of VIP-36-positive vesicles between endoplasmic reticulum and Golgi apparatus in GH3 cells. Cell Structure and Function, 28(3), 155–163. [CrossRef] [PubMed] [Google Scholar]
- Shu F, Li Y, Chu W, Chen X, Zhang Z, Guo Y, Feng Y, Xiao L, Li N. 2022. Characterization of calcium-dependent protein kinase 2A, a potential drug target against cryptosporidiosis. Frontiers in Microbiology, 13, 883674. [CrossRef] [PubMed] [Google Scholar]
- Singh RS, Bhari R, Kaur HP. 2011. Characteristics of yeast lectins and their role in cell-cell interactions. Biotechnology Advances, 29(6), 726–731. [CrossRef] [PubMed] [Google Scholar]
- Singh RS, Walia AK, Kanwar JR. 2016. Protozoa lectins and their role in host-pathogen interactions. Biotechnology Advances, 34(5), 1018–1029. [CrossRef] [PubMed] [Google Scholar]
- Singh RS, Walia AK, Khattar JS, Singh DP, Kennedy JF. 2017. Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475–496. [CrossRef] [PubMed] [Google Scholar]
- Tyanova S, Temu T, Cox J. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11(12), 2301–2319. [CrossRef] [PubMed] [Google Scholar]
- Xu R, Feng Y, Xiao L, Sibley LD. 2021. Insulinase-like protease 1 contributes to macrogamont formation in Cryptosporidium parvum. mBio, 12(2), e03405–e03420. [PubMed] [Google Scholar]
- Yang B, Wang D, Liu M, Wu X, Yin J, Zhu G. 2021. Host cells with transient overexpression of MDR1 as a novel in vitro model for evaluating on-target effect for activity against the epicellular Cryptosporidium parasite. Journal of Antimicrobial Chemotherapy, 77(1), 124–134. [CrossRef] [PubMed] [Google Scholar]
- Yerushalmi L, Lascourreges JF, Rhofir C, Guiot SR. 2001. Detection of intermediate metabolites of benzene biodegradation under microaerophilic conditions. Biodegradation, 12(6), 379–391. [CrossRef] [PubMed] [Google Scholar]
- Zhang H, Guo F, Zhu G. 2015. Cryptosporidium lactate dehydrogenase is associated with the parasitophorous vacuole membrane and is a potential target for developing therapeutics. PLoS Pathogens, 11(11), e1005250. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.