Open Access
Volume 30, 2023
Article Number 23
Number of page(s) 18
Published online 22 June 2023
  1. Adamo SA. 2013. Parasites: evolutions neurobiologists. Journal of Experimental Biology, 216, 3–10. [CrossRef] [PubMed] [Google Scholar]
  2. Akinsanya B, Ayanda IO, Fadipe AO, Onwuka B, Saliu JK. 2020. Heavy metals, parasitologic and oxidative stress biomarker investigations in Heterotis niloticus from Lekki Lagoon, Lagos, Nigeria. Toxicology Reports, 7, 1075–1082. [CrossRef] [PubMed] [Google Scholar]
  3. Alcántar-Escalera FJ, García-Varela M, Vázquez-Domínguez E, Pérez-Ponce de León G. 2013. Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in central Mexico. Molecular Ecology Resources, 13, 1116–1124. [PubMed] [Google Scholar]
  4. Amiard J-C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow P. 2006. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 160–202. [CrossRef] [Google Scholar]
  5. Amin OM. 1985. Classification, in Biology of the Acanthocephala. Crompton DWT, Nickol BB, Editors. University Press: Cambridge. p. 27–72. [Google Scholar]
  6. Amin OM. 2013. Classification of the Acanthocephala. Folia Parasitologica, 60, 273–305. [CrossRef] [PubMed] [Google Scholar]
  7. Amin OM. 2002. Revision of Neoechinorhynchus Stiles & Hassall, 1905 (Acanthocephala: Neoechinorhynchidae) with keys to 88 species in two subgenera. Systematic Parasitology, 53, 1–18. [CrossRef] [PubMed] [Google Scholar]
  8. Amin OM, Lisitsyna OI, Heckmann RA. 2022. Evaluating energy dispersive X-ray analysis (EDXA) as a diagnostic tool in acanthocephalan taxonomy as evidenced in Palaeacanthocephala and Archiacanthocephala. Systematic Parasitology, 100, 43–57. [Google Scholar]
  9. Amin OM, Heckmann RA, Ha NV. 2014. Acanthocephalans from fishes and amphibians in Vietnam, with descriptions of five new species. Parasite, 21, 53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Amin OM, Heckmann RA. 2022. SEM study of hooks in the Acanthocephala with emphasis on structural-functional relationships. Zoodiversity, 56(4). [Google Scholar]
  11. Andreou D, Antognazza CM, Williams CF, Bradley H, Reading AJ, Hardouin EA, Stewart JR, Sheath D, Galligar A, Johnson E, Britton JR. 2020. Vicariance in a generalist fish parasite driven by climate and salinity tolerance of hosts. Parasitology, 147, 1658–1664. [CrossRef] [PubMed] [Google Scholar]
  12. Astrin JJ, Zhou X, Misof B. 2013. The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. Zookeys, 30, 67–70. [CrossRef] [Google Scholar]
  13. Aznar FJ, Hernández-Orts JS, Raga JA. 2018. Morphology, performance and attachment function in Corynosoma spp. (Acanthocephala). Parasites & Vectors, 11, 633. [CrossRef] [PubMed] [Google Scholar]
  14. Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. 2015. Diverse applications of environmental DNA methods in parasitology. Trends in Parasitology, 31, 499–513. [CrossRef] [PubMed] [Google Scholar]
  15. Behrmann-Godel J, Yohannes E. 2015. Multiple isotope analyses of the piketapeworm Triaenophorus nodulosus reveal peculiarities in consumer-dietdiscrimination patterns. Journal of Helminthology, 89, 238–243. [CrossRef] [PubMed] [Google Scholar]
  16. Benesh DP, Lafferty KD, Kuris A. 2017. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes. Ecology, 98, 882. [CrossRef] [PubMed] [Google Scholar]
  17. Benesh DP, Parker G, Chubb JC. 2021. Life-cycle complexity in helminths: What are the benefits? Evolution, 75, 1936–1952. [CrossRef] [PubMed] [Google Scholar]
  18. Blackman RC, Constable D, Hahn C, Sheard AM, Durkota J, Hänfling B, Handley LL. 2017. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples – first record of Gammarus fossarum in the UK. Aquatic Invasions, 12, 177–189. [CrossRef] [Google Scholar]
  19. Blanar CA, Munkittrick KR, Houlahan J, MacLatchy DL, Marcogliese DJ. 2009. Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquatic Toxicology, 93, 18–28. [CrossRef] [Google Scholar]
  20. Blasco-Costa I, Poulin R. 2017. Parasite life-cycle studies: a plea to resurrect an old parasitological tradition. Journal of Helminthology, 91, 647–656. [CrossRef] [PubMed] [Google Scholar]
  21. Bombarová M, Marec F, Nguyen P, Špakulová M. 2007. Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica, 131, 141–149. [CrossRef] [PubMed] [Google Scholar]
  22. Bombarova M, Vitkova M, Špakulová M, Koubková B. 2009. Telomere analysis of platyhelminths and acanthocephalans by FISH and Southern hybridization. Genome, 52, 897–903. [CrossRef] [PubMed] [Google Scholar]
  23. Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. 2022. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology, 149, 1842–1861. [CrossRef] [PubMed] [Google Scholar]
  24. Brázová T, Hanzelová V, Miklisová D. 2012. Bioaccumulation of six PCB indicator congeners in a heavily polluted water reservoir in Eastern Slovakia: tissue-specific distribution in fish and their parasites. Parasitology Research, 111, 779–786. [CrossRef] [PubMed] [Google Scholar]
  25. Brown AF, Pascoe D. 1989. Parasitism and host sensitivity to cadmium: an acanthocephalan infection of the freshwater amphipod Gammarus pulex. Journal of Applied Ecology, 26, 473–487. [CrossRef] [Google Scholar]
  26. Bullock W. 1969. Morphological features as tools and as pitfalls in acanthocephalan systematics, in Problems in Systematics of Parasites, Schmidt G.D. University Park Press: Baltimore. p. 9–24. [Google Scholar]
  27. de Buron I, Golvan YJ. 1986. Les hôtes des Acanthocephales I - Les Hôtes intermédiaires. Annales de Parasitologie Humaine et Comparée, 61, 581–592. [CrossRef] [EDP Sciences] [Google Scholar]
  28. Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, Castaldo G, Dallas TA, Cizauskas CA, Cumming GS, Doña J, Harris NC, Jovani R, Mironov S, Muellerklein OC, Proctor HC, Getz WM. 2017. Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 3, e1602422. [Google Scholar]
  29. Cézilly F, Thomas F, Médoc V, Perrot-Minnot MJ. 2010. Host-manipulation by parasites with complex life cycles: adaptive or not? Trends in Parasitology, 26, 311–317. [CrossRef] [PubMed] [Google Scholar]
  30. Chen H-Y, Grabner DS, Nachev M, Shih H-H, Sures B. 2015. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ, 3, e1353. [CrossRef] [PubMed] [Google Scholar]
  31. Cheng W, Liu CH, Hsu JP, Chen JC. 2002. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus. Fish and Shellfish Immunology, 13, 351–365. [CrossRef] [Google Scholar]
  32. Cheng W, Wang L-U, Chen J-C. 2005. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture, 250, 592–601. [CrossRef] [Google Scholar]
  33. Colin Y, Molbert N, Berthe T, Agostini S, Alliot F, Decencière B, Millot A, Goutte A, Petit F. 2022. Dysbiosis of fish gut microbiota is associated with helminths parasitism rather than exposure to PAHs at environmentally relevant concentrations. Scientific Reports, 12, 11084. [CrossRef] [PubMed] [Google Scholar]
  34. Conway Morris S, Crompton D. 1982. The origins and evolution of the Acanthocephala. Biological Reviews of the Cambridge Philosophical Society, 57, 85–115. [CrossRef] [Google Scholar]
  35. Cornet S, Franceschi N, Bauer A, Rigaud T, Moret Y. 2009. Immune depression induced by acanthocephalan parasites in their intermediate crustacean host: consequences for the risk of super-infection and links with host behavioural manipulation. International Journal for Parasitology, 39, 221–229. [CrossRef] [PubMed] [Google Scholar]
  36. Cornet S, Sorci G. 2010. Parasite virulence when the infection reduces the host immune response. Proceedings of the Royal Society of London Biological Sciences, 277, 1929–1935. [CrossRef] [PubMed] [Google Scholar]
  37. Costa Fernandes VS, Amin O, Borges JN, Santos CP. 2019. A New Species of the Acanthocephalan Genus Filisoma (Cavisomidae) from Perciform Fishes in Rio de Janeiro, Brasil. Acta Parasitologica, 64, 176–186. [CrossRef] [PubMed] [Google Scholar]
  38. Crompton DWT. 1970. An ecological approach to acanthocephalan physiology. Camb. Monogr. exp. Biol. No. 17. Cambridge University Press: London, p. 125. [Google Scholar]
  39. Crompton DWT, Nickol BB. 1985. Biology of the Acanthocephala. Cambridge University Press: Cambridge. p. 519. [Google Scholar]
  40. David GM, Staentzel C, Schlumberger O, Perrot-Minnot MJ, Beisel JN, Hardion L. 2018. A minimalist macroparasite diversity in the round goby of the Upper Rhine reduced to an exotic acanthocephalan lineage. Parasitology, 145, 1020–1026. [CrossRef] [PubMed] [Google Scholar]
  41. Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MD, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. 2019. Chromosomics: Bridging the gap between genomes and chromosomes. Genes, 10, 627. [CrossRef] [PubMed] [Google Scholar]
  42. Dezfuli BS, Bosi G, DePasquale JA, Manera M, Giari L. 2016. Fish innate immunity against intestinal helminths. Fish and Shellfish Immunology, 50, 274–287. [CrossRef] [Google Scholar]
  43. Dezfuli BS, Simoni E, Duclos L, Rossetti E. 2008. Crustacean-acanthocephalan interaction and host cell-mediated immunity: parasite encapsulation and melanization. Folia Parasitologica, 55, 53–59. [CrossRef] [PubMed] [Google Scholar]
  44. Dianne L, Perrot-Minnot MJ, Bauer A, Gaillard M, Léger E, Rigaud T. 2011. Protection first then facilitation: A manipulative parasite modulates the vulnerability to predation of its intermediate host according to its own developmental stage. Evolution, 65, 2692–2698. [CrossRef] [Google Scholar]
  45. Douchet P, Boissier J, Mulero S, Ferté H, Doberva M, Allienne J, Toulza E, Bethune K, Rey O. 2022. Make visible the invisible: Optimized development of an environmental DNA metabarcoding tool for the characterization of trematode parasitic communities. environmental DNA, 4, 627–641. [CrossRef] [Google Scholar]
  46. Ebbs ET, Loker ES, Bu L, Locke SA, Tkach VT, Devkota R, Flores VR, Pinto HA, Brant SV. 2022. Phylogenomics and diversification of the Schistosomatidae based on Targeted Sequence Capture of Ultra-Conserved Elements. Pathogens, 11, 769. [CrossRef] [PubMed] [Google Scholar]
  47. Elsaied HE, Soliman T, Abu-Taleb HT, Goto H, Jenke-Kodam H. 2019. Phylogenetic characterization of eukaryotic and prokaryotic gut flora of Nile tilapia, Oreochromis niloticus, along niches of Lake Nasser, Egypt, based on rRNA gene high-throughput sequences. Ecological Genetics and Genomics, 11, 100037. [CrossRef] [Google Scholar]
  48. Emde S, Rueckert S, Palm HW, Klimpel S. 2012. Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS One, 7, e53218. [CrossRef] [PubMed] [Google Scholar]
  49. Fanton H, Franquet E, Logez M, Cavalli L, Kaldonski N. 2022. Acanthocephalan parasites reflect ecological status of freshwater ecosystem. Science of the Total Environment, 838, 156091. [CrossRef] [Google Scholar]
  50. Fayard M, Dechaume-Moncharmont FX, Wattier R, Perrot-Minnot MJ. 2020. Magnitude and direction of parasite-induced phenotypic alterations: a meta-analysis in acanthocephalans. Biological Reviews, 95, 1233–1251. [CrossRef] [PubMed] [Google Scholar]
  51. Filipović Marijić V, Vardić Smrzlić I, Raspor B. 2013. Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. Science of the Total Environment, 463, 772–780. [CrossRef] [Google Scholar]
  52. Filipović Marijić V, Vardić Smrzlić I, Raspor B. 2014. Does fish reproduction and metabolic activity influence metal levels in fish intestinal parasites, acanthocephalans, during fish spawning and post-spawning period? Chemosphere, 112, 449–455. [CrossRef] [PubMed] [Google Scholar]
  53. Francová K, Ondračková M, Polačik M, Jurajda P. 2011. Parasite fauna of native and non-native populations of Neogobius melanostomus (Pallas, 1814) (Gobiidae) in the longitudinal profile of the Danube River. Journal of Applied Ichthyology, 27, 879–886. [CrossRef] [Google Scholar]
  54. Frank SN, Godehardt S, Nachev M, Trubiroha A, Kloas W, Sures B. 2013. Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphus minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts. Environmental Pollution, 180, 173–179. [CrossRef] [Google Scholar]
  55. Galaktionov KV. 2017. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change. Journal of Helminthology, 91, 387–408. [CrossRef] [PubMed] [Google Scholar]
  56. Gao J-W, Yuan X-P, Wu H, Xiang C-Y, Xie M, Song R, Chen Z-Y, Wu Y-A, Ou D-S. 2022. Mitochondrial phylogenomics of Acanthocephala: nucleotide alignments produce long-branch attraction artefacts. Parasites & Vectors, 15, 376. [CrossRef] [PubMed] [Google Scholar]
  57. García-Varela M, Andrade-Gómez L. 2021. First steps to understand the systematics of Echinorhynchidae Cobbold, 1876 (Acanthocephala), inferred through nuclear gene sequences. Parasitology International, 81, 102264. [CrossRef] [PubMed] [Google Scholar]
  58. García-Varela M, García-Prieto L, Rodríguez RP. 2011. Molecular identification and first description of the male of Neoechinorhynchus schmidti (Acanthocephala: Neoechinorhynchidae), a parasite of Trachemys scripta (Testudines) in México. Parasitology International, 60, 433–439. [CrossRef] [PubMed] [Google Scholar]
  59. García-Varela M, López-Jiménez A, González-García MT, Sereno-Uribe AL, Andrade-Gómez L. 2023. Contrasting the population genetic structure of a specialist (Hexaglandula corynosoma: Acanthocephala: Polymorphidae) and generalist parasite (Southwellina hispida) distributed sympatrically in Mexico. Parasitology, 150, 348–358. [CrossRef] [Google Scholar]
  60. García-Varela M, Masper A, Crespo EA, Hernández-Orts JS. 2021. Genetic diversity and phylogeography of Corynosoma australe Johnston, 1937 (Acanthocephala: Polymorphidae), an endoparasite of otariids from the Americas in the northern and southern hemispheres. Parasitology International, 80, 102205. [CrossRef] [PubMed] [Google Scholar]
  61. García-Varela M, Pérez-Ponce de León G, de la Torre P, Cummings MP, Sarma S, Laclette JP. 2000. Phylogenetic relationships of Acanthocephala based on analysis of 18S ribosomal RNA gene sequences. Journal of Molecular Evolution, 50, 532–540. [CrossRef] [PubMed] [Google Scholar]
  62. Gazi M, Kim J, García-Varela M, Park C, Littlewood DTJ, Park J-K. 2016. Mitogenomic phylogeny of Acanthocephala reveals novel class relationships. Zoologica Scripta, 45, 437–454. [CrossRef] [Google Scholar]
  63. Giari L, Fano EA, Castaldelli G, Grabner D, Sures B. 2020. The ecological importance of amphipod–parasite associations for aquatic ecosystems. Water, 12, 2429. [Google Scholar]
  64. Gilbert BM, Nachev M, Jochmann MA, Schmidt TC, Köster D, Sures B, Avenant-Oldewage A. 2020. You are how you eat. Differences in trophic levels of parasites infecting a single host according to stable isotopes. Parasitology Research, 119, 1393–1400. [CrossRef] [PubMed] [Google Scholar]
  65. Gismondi E, Beisel J-N, Cossu-Leguille C. 2012. Polymorphus minutus affects antitoxic responses of Gammarus roeseli exposed to cadmium. PLoS One, 7, e41475. [CrossRef] [PubMed] [Google Scholar]
  66. Gismondi E, Cossu-Leguille C, Beisel J-N. 2012. Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium? Ecotoxicology, 21, 1188–1193. [CrossRef] [PubMed] [Google Scholar]
  67. Golvan YJ, de Buron I. 1988. Les hôtes des Acanthocéphales II - Les Hôtes définitifs. 1. Poissons. Annales de Parasitologie Humaine et Comparée, 63, 349–375. [CrossRef] [EDP Sciences] [Google Scholar]
  68. Gomes APN, Olifiers N, Souza JGR, Barbosa HS, D’Andrea PS, Maldonado A. 2015. A new acanthocephalan species (Archiacanthocephala: Oligacanthorhynchidae) from the crab-eating fox (Cerdocyon thous) in the Brazilian Pantanal wetlands. Journal of Parasitology, 101, 74–79. [CrossRef] [PubMed] [Google Scholar]
  69. Goulding TC, Sarah Cohen C. 2014. Phylogeography of a marine acanthocephalan: lack of cryptic diversity in a cosmopolitan parasite of mole crabs. Journal of Biogeography, 41, 965–976. [CrossRef] [Google Scholar]
  70. Gourbal BEF, Guillou F, Mitta G, Sibille P, Théron A, Pointier JP, Coustau C. 2008. Excretory-secretory products of larval Fasciola hepatica investigated using a two-dimensional proteomic approach. Molecular and Biochemical Parasitology, 161, 63–66. [CrossRef] [PubMed] [Google Scholar]
  71. Grabner D, Sures B. 2019. Amphipod parasites may bias results of ecotoxicological research. Diseases of Aquatic Organisms, 136, 121–132. [CrossRef] [Google Scholar]
  72. Guillou F, Roger E, Moné Y, Rognon A, Grunau C, Théron A, Mitta G, Coustau C, Gourbal BEF. 2007. Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Molecular and Biochemical Parasitology, 155, 45–56. [CrossRef] [PubMed] [Google Scholar]
  73. Harris M. 2020. The life cycle of the parasite Pomphorhynchus tereticollis in reference to 0+ cyprinids and the intermediate host Gammarus spp. in the UK, PhD Thesis, Bournemouth University. [Google Scholar]
  74. Hatcher MJ, Dick JTA, Bojko J, Stentiford GD, Stebbing P, Dunn AM. 2019. Infection and invasion: study cases from aquatic communities, in Wildlife Disease Ecology. Wilson K, Fenton A, Tompkins D, Editors. Cambridge University Press. p. 262–295. [Google Scholar]
  75. Herlyn H, Piskurek O, Schmitz J, Ehlers U, Zischler H. 2003. The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution, 26, 155–164. [CrossRef] [PubMed] [Google Scholar]
  76. Hine PM, Kennedy CR. 1974. Observations on the distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis (Muller). Journal of Fish Biology, 6, 521–535. [CrossRef] [Google Scholar]
  77. Hine PM, Kennedy CR. 1974. The population biology of the acanthocephalan Pomphorhynchus laevis (Muller) in the River Avon. Journal of Fish Biology, 6, 665–679. [CrossRef] [Google Scholar]
  78. Hoffman GL. 1999. Parasites of North American freshwater fishes, 2nd edn. Cornell University Press: Ithaca, New York. [CrossRef] [Google Scholar]
  79. Hohenadler MAA, Nachev M, Thielen F, Taraschewski H, Grabner D, Sures B. 2018. Pomphorhynchus laevis: An invasive species in the river Rhine? Biological Invasions, 20, 207–217. [CrossRef] [Google Scholar]
  80. Holman JD, Burnett KG, Burnett LE. 2004. Effects of hypercapnic hypoxia on the clearance of Vibrio campbellii in the Atlantic blue crab, Callinectes sapidus Rathbun. Biological Bulletin, 206, 188–196. [CrossRef] [PubMed] [Google Scholar]
  81. Huston DC, Cribb TH, Smales LR. 2020. Molecular characterisation of acanthocephalans from Australian marine teleosts: proposal of a new family, synonymy of another and transfer of taxa between orders. Systematic Parasitology, 97, 1–23. [CrossRef] [PubMed] [Google Scholar]
  82. International Helminth Genomes Consortium. 2019. Comparative genomics of the major parasitic worms. Nature Genetics, 51, 163–174. [CrossRef] [PubMed] [Google Scholar]
  83. Iritani R, Sato T. 2018. Host-manipulation by trophically transmitted parasites: The switcher-paradigm. Trends in Parasitology, 34, 934–944. [CrossRef] [PubMed] [Google Scholar]
  84. Kamiya E, Urabe M, Okuda N. 2020. Does atypical 15N and 13C enrichment in parasites result from isotope ratio variation of host tissues they are infected? Limnology, 21, 139–149. [CrossRef] [Google Scholar]
  85. Karin BR, Gamble T, Jackman TR. 2020. Optimizing phylogenomics with rapidly evolving long exons: Comparison with anchored hybrid enrichment and ultraconserved elements. Molecular Biology and Evolution, 37, 904–922. [CrossRef] [PubMed] [Google Scholar]
  86. Keidel L, García-Varela M, Brener B, de León GP-P, Santos CP. 2019. Integrative taxonomy reveals a new species of Dollfusentis (Acanthocephala: Illiosentidae), in Orthopristis ruber (Osteichthyes: Haemulidae) from Rio de Janeiro, Brazil. Parasitology International, 71, 132–142. [CrossRef] [PubMed] [Google Scholar]
  87. Kennedy CR. 2006. Ecology of the Acanthocephala, 1st edn. Cambridge University Press. [CrossRef] [Google Scholar]
  88. Kennedy C, Bates R, Brown A. 1989. Discontinuous distributions of the fish acanthocephalans Pomphorhynchus laevis and Acanthocephalus anguillae in Britain and Ireland: an hypothesis. Journal of Fish Biology, 34, 607–619. [CrossRef] [Google Scholar]
  89. Kita Y, Hiruta SF, Sasaki M, Kajihara H. 2023. Systematic position of the genus Metacanthocephalus Yamaguti, 1959 (Palaeacanthocephala: Echinorhynchida) inferred from molecular evidence, with a redescription of Metacanthocephalus ovicephalus (Zhukov, 1960). Parasitology International, 94, 102731. [CrossRef] [PubMed] [Google Scholar]
  90. Koch RW, Shannon RP, Detwiler JT, Bolek MG. 2021. Molecular identification of juvenile Neoechinorhynchus spp. (Phylum: Acanthocephala) infecting ostracod and snail hosts provides insight into acanthocephalan host use. Journal of Parasitology, 107, 739–761. [Google Scholar]
  91. Labaude S, Rigaud T, Cézilly F. 2015. Host manipulation in the face of environmental changes: Ecological consequences. International Journal for Parasitology: Parasites and Wildlife, 4, 442–451. [CrossRef] [Google Scholar]
  92. Lacerda A, Roumbedakis K, Junior JB, Nuñer A, Petrucio M, Martins M. 2018. Fish parasites as indicators of organic pollution in southern Brazil. Journal of Helminthology, 92, 322–331. [CrossRef] [PubMed] [Google Scholar]
  93. Lafferty K. 1997. Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology Today, 13, 251–255. [CrossRef] [Google Scholar]
  94. Lagrue C. 2017. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: A plea for parasite-focused studies. International Journal for Parasitology: Parasites and Wildlife, 6, 364–374. [CrossRef] [Google Scholar]
  95. Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P. 1998. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish and Shellfish Immunology, 8, 621–629. [CrossRef] [Google Scholar]
  96. Le TTY, Garcia MR, Nachev M, Grabner D, Balsa-Canto E, Hendriks AJ, Sures B. 2018. Development of a PBPK model for silver accumulation in chub infected with acanthocephalan parasites. Environmental Science & Technology, 52, 12514–12525. [CrossRef] [PubMed] [Google Scholar]
  97. Le TTY, Kiwitt G, Nahar N, Nachev M, Grabner D, Sures B. 2022. What contributes to the metal-specific partitioning in the chub-acanthocephalan system? Aquatic Toxicology, 247, 106178. [CrossRef] [Google Scholar]
  98. Le TTY, Rijsdijk L, Sures B, Hendriks AJ. 2014. Accumulation of persistent organic pollutants in parasites. Chemosphere, 108, 145–151. [CrossRef] [PubMed] [Google Scholar]
  99. Lewis J, Hoole D, Chappell LH. 2003. Parasitism and environmental pollution: parasites and hosts as indicators of water quality. Parasitology, 126, S1–S3. [CrossRef] [Google Scholar]
  100. Lewis S, Handy R, Cordi B, Billinghurst Z, Depledge M. 1999. Stress proteins (HSP’s): methods of detection and their use as an environmental biomarker. Ecotoxicology, 8, 351–368. [CrossRef] [Google Scholar]
  101. Lisitsyna OI, Kudlai O, Spraker TR, Tkach VV, Smales LR, Kuzmina TA. 2019. Morphological and molecular evidence for synonymy of Corynosoma obtuscens Lincicome, 1943 with Corynosoma australe Johnston, 1937 (Acanthocephala: Polymorphidae). Systematic Parasitology, 96, 95–110. [CrossRef] [PubMed] [Google Scholar]
  102. Lymbery AJ, Morine M, Kanani HG, Beatty SJ, Morgan DL. 2014. Co-invaders: The effects of alien parasites on native hosts. International Journal for Parasitology: Parasites and Wildlife, 3, 171–177. [CrossRef] [Google Scholar]
  103. Malyarchuk B, Derenko M, Mikhailova E, Denisova G. 2014. Phylogenetic relationships among Neoechinorhynchus species (Acanthocephala: Neoechinorhynchidae) from North-East Asia based on molecular data. Parasitology International, 63, 100–107. [CrossRef] [PubMed] [Google Scholar]
  104. Martínez-Aquino A, Reyna-Fabián ME, Rosas-Valdez R, Razo-Mendivil U, Pérez-Ponce de León G, García-Varela M. 2009. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. Journal of Parasitology, 95, 1040–1047. [CrossRef] [PubMed] [Google Scholar]
  105. Mauer K, Hellmann SL, Groth M, Fröbius AC, Zischler H, Hankeln T, Herlyn H. 2020. The genome, transcriptome, and proteome of the fish parasite Pomphorhynchus laevis (Acanthocephala). PLoS One, 15, e0232973. [CrossRef] [PubMed] [Google Scholar]
  106. Mauer KM, Schmidt H, Dittrich M, Fröbius AC, Hellmann SL, Zischler H, Hankeln T, Herlyn H. 2021. Genomics and transcriptomics of epizoic Seisonidea (Rotifera, syn. Syndermata) reveal strain formation and gradual gene loss with growing ties to the host. BMC Genomics, 22, 604. [CrossRef] [PubMed] [Google Scholar]
  107. McCahon CP, Poulton MJ. 1991. Lethal and sub-lethal effects of acid, aluminium and lime on Gammarus pulex during repeated simulated episodes in a Welsh stream. Freshwater Biology, 25, 169–178. [CrossRef] [Google Scholar]
  108. McCahon C, Brown A, Pascoe D. 1988. The effect of the acanthocephalan Pomphorhynchus laevis (Müller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Archives of Environmental Contamination and Toxicology, 17, 239–243. [CrossRef] [Google Scholar]
  109. McCahon C, Brown A, Poulton MJ, Pascoe D. 1989. Effects of acid, aluminium and lime additions on fish and invertebrates in a chronically acidic Welsh stream. Water, Air, and Soil Pollution, 45, 345–359. [Google Scholar]
  110. Médoc V, Piscart C, Maazouzi C, Simon L, Beisel J-N. 2011. Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence. Parasitology, 138, 537–546. [CrossRef] [PubMed] [Google Scholar]
  111. Médoc V, Rigaud T, Motreuil S, Perrot-Minnot M-J, Bollache L. 2011. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs. Naturwissenschaften, 98, 825–835. [CrossRef] [PubMed] [Google Scholar]
  112. Molbert N, Alliot F, Leroux-Coyau M, Médoc V, Biard C, Meylan S, Jacquin L, Santos R, Goutte A. 2020. Potential benefits of acanthocephalan parasites for chub hosts in polluted environments. Environmental Science & Technology, 54, 5540–5549. [CrossRef] [PubMed] [Google Scholar]
  113. Morton DN, Lafferty KD. 2022. Parasites in kelp-forest food webs increase food-chain length, complexity, and specialization, but reduce connectance. Ecological Monographs, 92, e1506. [CrossRef] [PubMed] [Google Scholar]
  114. Muhammad N, Ahmad MS, Li L, Zhao Q, Ullah H, Zhu X-Q, Ma J. 2020. Mitochondrial DNA dataset suggest that the genus Sphaerirostris Golvan, 1956 is a synonym of the genus Centrorhynchus Lühe, 1911. Parasitology, 147, 1149–1157. [CrossRef] [PubMed] [Google Scholar]
  115. Nachev M, Jochmann MA, Walter F, Wolbert JB, Schulte M, Schmidt TC, Sures B. 2017. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites & Vectors, 10, 90. [CrossRef] [PubMed] [Google Scholar]
  116. Nachev M, Sures B. 2016. Environmental parasitology: Parasites as accumulation bioindicators in the marine environment. Journal of Sea Research, 113, 45–50. [CrossRef] [Google Scholar]
  117. Nachev M, Zimmermann S, Rigaud T, Sures B. 2010. Is metal accumulation in Pomphorhynchus laevis dependent on parasite sex or infrapopulation size? Parasitology, 137, 1239–1248. [CrossRef] [PubMed] [Google Scholar]
  118. Near TJ, Garey JR, Nadler SA. 1998. Phylogenetic relationships of the Acanthocephala inferred from 18S ribosomal DNA sequences. Molecular Phylogenetics and Evolution, 10, 287–298. [CrossRef] [PubMed] [Google Scholar]
  119. Nickol BB. 1985. Epizootiology, in Biology of the Acanthocephala. Crompton DWT, Nickol BB, Editors. University Press: Cambridge, pp 307–346. [Google Scholar]
  120. de Oliveira EA, Bertollo LAC, Yano CF, Liehr T, de Bello Cioffi M. 2015. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Molecular Cytogenetics, 8, 1–10. [CrossRef] [PubMed] [Google Scholar]
  121. Orosová M, Králová-Hromadová I, Bazsalovicsová E, Špakulová M. 2010. Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda). Parasitology International, 59, 351–357. [CrossRef] [PubMed] [Google Scholar]
  122. Orosová M, Marková A, Marec F, Barčák D, Brázová T, Oros M. 2022. New cytogenetic data on Caryophyllaeus laticeps and Paracaryophyllaeus gotoi, parasites of evolutionary interest. Parasitology, 149, 1094–1105. [CrossRef] [PubMed] [Google Scholar]
  123. Perrot-Minnot MJ, Cézilly F. 2013. Investigating candidate neuromodulatory systems underlying parasitic manipulation: Concepts, limitations and prospects. Journal of Experimental Biology, 216, 134–141. [CrossRef] [PubMed] [Google Scholar]
  124. Perrot-Minnot MJ, Guyonnet E, Bollache L, Lagrue C. 2019. Differential patterns of definitive host use by two fish acanthocephalans occurring in sympatry: Pomphorhynchus laevis and Pomphorhynchus tereticollis. International Journal for Parasitology: Parasites and Wildlife, 8, 135–144. [CrossRef] [Google Scholar]
  125. Perrot-Minnot MJ, Maddaleno M, Cézilly F. 2016. Parasite-induced inversion of geotaxis in a freshwater amphipod: A role for anaerobic metabolism? Functional Ecology, 30, 780–788. [CrossRef] [Google Scholar]
  126. Perrot-Minnot MJ, Sanchez-Thirion K, Cézilly F. 2014. Multidimensionality in host manipulation mimicked by serotonin injection. Proceedings of the Royal Society B: Biological Sciences, 281, 20141915. [CrossRef] [PubMed] [Google Scholar]
  127. Perrot-Minnot MJ, Špakulová M, Wattier R, Kotlík P, Düşen S, Aydoğdu A, Tougard C. 2018. Contrasting phylogeography of two Western Palaearctic fish parasites despite similar life cycles. Journal of Biogeography, 45, 101–115. [CrossRef] [Google Scholar]
  128. Pfenning-Butterworth AC, Sparkes TC. 2023. Evolutionary history and host ecology determine acanthocephalan egg shape. Evolutionary Biology, 50, 137–145. [CrossRef] [Google Scholar]
  129. Petkevičiūtė R. 1996. A chromosome study of Schistocephalus solidus (Müller, 1776) (Cestoda: Pseudophyllidea). Systematic Parasitology, 33, 183–186. [CrossRef] [Google Scholar]
  130. Pinacho-Pinacho CD, Hernández-Orts JS, Sereno-Uribe AL, Pérez-Ponce de León G, García-Varela M. 2017. Mayarhynchus karlae ng, n. sp. (Acanthocephala: Neoechinorhynchidae), a parasite of cichlids (Perciformes: Cichlidae) in southeastern Mexico, with comments on the paraphyly of Neoechynorhynchus Stiles & Hassall, 1905. Systematic Parasitology, 94, 351–365. [CrossRef] [PubMed] [Google Scholar]
  131. Pinacho-Pinacho CD, García-Varela M, Sereno-Uribe AL, de León GP-P. 2018. A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree-based species delimitation methods: Ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Molecular Phylogenetics and Evolution, 127, 30–45. [CrossRef] [PubMed] [Google Scholar]
  132. Pinacho-Pinacho CD, Pérez-Ponce de León G, García-Varela M. 2012. Description of a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) a parasite of Dormitator latifrons from Southwestern Mexico based on morphological and molecular characters. Parasitology International, 61, 634–644. [CrossRef] [PubMed] [Google Scholar]
  133. Pinacho-Pinacho CD, Sereno-Uribe AL, García-Varela M. 2014. Morphological and molecular data reveal a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from Dormitator maculatus in the Gulf of Mexico. Parasitology International, 63, 763–771. [CrossRef] [PubMed] [Google Scholar]
  134. Pinacho-Pinacho CD, Sereno-Uribe AL, Pérez-Ponce de León G, Garcia-Varela M. 2015. Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA. Zootaxa, 3985, 98–116. [CrossRef] [PubMed] [Google Scholar]
  135. Podolska M, Polak-Juszczak L, Nadolna-Ałtyn K. 2016. Host condition and accumulation of metals by acanthocephalan parasite Echinorhynchus gadi in cod Gadus morhua from the southern Baltic Sea. Marine Pollution Bulletin, 113, 287–292. [CrossRef] [PubMed] [Google Scholar]
  136. Poulin R. 2007. Investing in attachment: evolution of anchoring structures in acanthocephalan parasites. Biological Journal of the Linnean Society, 90, 637–645. [CrossRef] [Google Scholar]
  137. Poulin R, Maure F. 2015. Host manipulation by parasites: A look back before moving forward. Trends in Parasitology, 31, 563–570. [CrossRef] [PubMed] [Google Scholar]
  138. Ratnasingham S, Hebert PDN. 2007. BOLD: The Barcode of Life Data system ( Molecular Ecology Notes, 7, 355–364. [CrossRef] [PubMed] [Google Scholar]
  139. Ratnasingham S, Hebert PDN. 2013. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS One, 8, e66213. [CrossRef] [PubMed] [Google Scholar]
  140. Rauque C, Flores V, Semenas L. 2022. Pseudocorynosoma enrietti (Molfi & Freitas Fernandes, 1953) (Acanthocephala: Polymorphidae) from Patagonia (Argentina): life cycle, localities, and new host records. Journal of Helminthology, 96, e38. [CrossRef] [PubMed] [Google Scholar]
  141. Reier S, Sattmann H, Schwaha T, Harl J, Konecny R, Haring E. 2019. An integrative taxonomic approach to reveal the status of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in Austria. International Journal for Parasitology: Parasites and Wildlife, 8, 145–155. [CrossRef] [Google Scholar]
  142. Reier S, Sattmann H, Schwaha T, Fuehrer H-P, Haring E. 2020. Unravelling the hidden biodiversity – the establishment of DNA barcodes of fish parasitizing Acanthocephala Koehlreuther, 1771 in view of taxonomic misidentifications, intraspecific variability and possible cryptic species. Parasitology, 147, 1499–1508. [CrossRef] [PubMed] [Google Scholar]
  143. Rigaud T, Moret Y. 2003. Differential phenoloxidase activity between native and invasive gammarids infected by local acanthocephalans: differential immunosuppression? Parasitology, 127, 571–577. [CrossRef] [PubMed] [Google Scholar]
  144. Rosas-Valdez R, Morrone JJ, García-Varela M. 2012. Molecular phylogenetics of Floridosentis Ward, 1953 (Acanthocephala: Neoechinorhynchidae) parasites of mullets (Osteichthyes) from Mexico, using 28S rDNA sequences. Journal of Parasitology, 98, 855–862. [CrossRef] [PubMed] [Google Scholar]
  145. Rosas-Valdez R, Morrone JJ, Pinacho-Pinacho CD, Domínguez-Domínguez O, García-Varela M. 2020. Genetic diversification of acanthocephalans of the genus Floridosentis Ward 1953 (Acanthocephala: Neoechinorhynchidae), parasites of mullets from the Americas. Infection, Genetics and Evolution, 85, 104535. [CrossRef] [PubMed] [Google Scholar]
  146. Ru SS, Yang RJ, Chen HX, Kuzmina TA, Spraker TR, Li L. 2022. Morphology, molecular characterization and phylogeny of Bolbosoma nipponicum Yamaguti, 1939 (Acanthocephala: Polymorphidae), a potential zoonotic parasite of human acanthocephaliasis. International Journal for Parasitology: Parasites and Wildlife, 18, 212–220. [CrossRef] [Google Scholar]
  147. Sarwar H, Zhao W, Kibet CJ, Sitko J, Nie P. 2021. Morphological and complete mitogenomic characterisation of the acanthocephalan Polymorphus minutus infecting the duck Anas platyrhynchos. Folia Parasitologica, 68, 1–9. [CrossRef] [Google Scholar]
  148. Scheifler M, Ruiz-Rodríguez M, Sanchez-Brosseau S, Magnanou E, Suzuki MT, West N, Duperron S, Desdevises Y. 2019. Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS One, 14, e0221475. [CrossRef] [PubMed] [Google Scholar]
  149. Schmidt GH. 1985. Development and life cycles, in Biology of the Acanthocephala. Crompton DWT, Nickol BB, Editors. University Press: Cambridge. p. 273–305. [Google Scholar]
  150. Schmidt H, Mauer K, Glaser M, Dezfuli BS, Hellmann SL, Silva Gomes AL, Butter F, Wade RC, Hankeln T, Herlyn H. 2022. Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model. BMC Genomics, 23, 677. [CrossRef] [PubMed] [Google Scholar]
  151. Schmidt H, Mauer K, Hankeln T, Herlyn H. 2022. Host-dependent impairment of parasite development and reproduction in the acanthocephalan model. Cell & Bioscience, 12, 75. [CrossRef] [PubMed] [Google Scholar]
  152. Scholz T, Choudhury A. 2014. Parasites of freshwater fishes in North America: Why so neglected? Journal of Parasitology, 100, 26–45. [CrossRef] [PubMed] [Google Scholar]
  153. Selbach C, Mouritsen KN, Poulin R, Sures B, Smit NJ. 2022. Bridging the gap: aquatic parasites in the One Health concept. Trends in Parasitology, 38, 109–111. [CrossRef] [PubMed] [Google Scholar]
  154. Sereno-Uribe AL, López-Jiménez A, González-García MT, Pinacho-Pinacho CD, Ríos RM, García-Varela M. 2022. Phenotypic plasticity, genetic structure and systematic position of Neoechinorhynchus emyditoides Fisher, 1960 (Acanthocephala: Neoechinorhynchidae): a parasite of emydid turtles from the Nearctic and Neotropical regions. Parasitology, 149, 991–1002. [CrossRef] [Google Scholar]
  155. Shinn AP, Pratoomyot J, Bron JE, Paladini G, Brooker EE, Brooker AJ. 2015. Economic costs of protistan and metazoan parasites to global mariculture. Parasitology, 142, 196–270. [CrossRef] [PubMed] [Google Scholar]
  156. Sielaff M, Schmidt H, Struck TH, Rosenkranz D, Mark Welch DB, Hankeln T, Herlyn H. 2016. Phylogeny of Syndermata (syn. Rotifera): mitochondrial gene oder verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic Hemirotifera. Molecular Phylogenetics and Evolution, 96, 79–92. [CrossRef] [PubMed] [Google Scholar]
  157. Smales L. 2014. The genus Rhadinorhynchus (Acanthocephala: Rhadinorhynchidae) from marine fish in Australia with the description of four new species. Acta Parasitologica, 59, 721–736. [CrossRef] [PubMed] [Google Scholar]
  158. Sørensen MV, Giribet G. 2006. A modern approach to rotiferan phylogeny: combining morphological and molecular data. Molecular Phylogenetics and Evolution, 40, 585–608. [CrossRef] [PubMed] [Google Scholar]
  159. Špakulová M, Králová-Hromadová I, Dudiňák V, Reddy P. 2002. Karyotype of Acanthocephalus lucii: the first record of supernumerary chromosomes in thorny-headed worms. Parasitology Research, 88, 778–780. [CrossRef] [PubMed] [Google Scholar]
  160. Špakulová M, Perrot-Minnot MJ, Neuhaus B. 2011. Resurrection of Pomphorhynchus tereticollis (Rudolphi, 1809) (Acanthocephala: Pomphorhynchidae) based on new morphological and molecular data. Helminthologia, 48, 268–277. [CrossRef] [Google Scholar]
  161. Stanevičiũté G, Kiseliené V. 2001. Chromosome studies of Ichthyocotylurus platycephalus (Creplin, 1825) Odening 1969 with description of triploid variant and comparative karyology of the genus Ichthyocotylurus. Parasite, 8, 137–145. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  162. Steinauer M, Nickol B, Ortí G. 2007. Cryptic speciation and patterns of phenotypic variation of a highly variable acanthocephalan parasite. Molecular Ecology, 16, 4097–4109. [CrossRef] [PubMed] [Google Scholar]
  163. Sures B, Radszuweit H. 2007. Pollution-induced heat shock protein expression in the amphipod Gammarus roeseli is affected by larvae of Polymorphus minutus (Acanthocephala). Journal of Helminthology, 81, 191–197. [CrossRef] [PubMed] [Google Scholar]
  164. Sures B, Thielen F, Baska F, Messerschmidt J, Von Bohlen A. 2005. The intestinal parasite Pomphorhynchus laevis as a sensitive accumulation indicator for the platinum group metals Pt, Pd, and Rh. Environmental Research, 98, 83–88. [CrossRef] [PubMed] [Google Scholar]
  165. Sures B, Nachev M. 2022. Effects of multiple stressors in fish: how parasites and contaminants interact. Parasitology, 149, 1822–1828. [CrossRef] [PubMed] [Google Scholar]
  166. Sures B, Nachev M, Selbach C, Marcogliese DJ. 2017. Parasite responses to pollution: what we know and where we go in “Environmental Parasitology”. Parasites & Vectors, 10, 65. [CrossRef] [PubMed] [Google Scholar]
  167. Sures B, Reimann N. 2003. Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biology, 26, 680–686. [CrossRef] [Google Scholar]
  168. Sures B, Siddall R, Taraschewski H. 1999. Parasites as accumulation indicators of heavy metal pollution. Parasitology Today, 15, 16–21. [CrossRef] [Google Scholar]
  169. Sures B, Taraschewski H. 1995. Cadmium concentrations in two adult acanthocephalans, Pomphorhynchus laevis and Acanthocephalus lucii, as compared with their fish hosts and cadmium and lead levels in larvae of A. lucii as compared with their crustacean host. Parasitology Research, 81, 494–497. [CrossRef] [Google Scholar]
  170. Tain L, Perrot-Minnot MJ, Cézilly F. 2006. Altered host behaviour and brain serotonergic activity caused by acanthocephalans: Evidence for specificity. Proceedings of the Royal Society B: Biological Sciences, 273, 3039–3045. [CrossRef] [PubMed] [Google Scholar]
  171. Tain L, Perrot-Minnot MJ, Cézilly F. 2007. Differential influence of Pomphorhynchus laevis (Acanthocephala) on brain serotonergic activity in two congeneric host species. Biology Letters, 3, 69–72. [CrossRef] [Google Scholar]
  172. Taraschewski H. 2000. Host-parasite interactions in acanthocephala: A morphological approach. Advances in Parasitology, 46, 1–179. [CrossRef] [PubMed] [Google Scholar]
  173. Thielen F, Zimmermann S, Baska F, Taraschewski H, Sures B. 2004. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution, 129, 421–429. [CrossRef] [Google Scholar]
  174. Tokeson JPE, Holmes JC. 1982. The effects of temperature and oxygen on the development of Polymorphus marilis (Acanthocephala) in Gammarus lacustris (Amphipoda). Journal of Parasitology, 68, 112–119. [CrossRef] [Google Scholar]
  175. Valtonen ET, Holmes JC, Koskivaara M. 1997. Eutrophication, pollution and fragmentation: effects on parasite communities in roach (Rutilus rutilus) and perch (Perca fluviatilis) in four lakes in central Finland. Canadian Journal of Fisheries and Aquatic Sciences, 54, 572–585. [CrossRef] [Google Scholar]
  176. Vardić Smrzlić I, Valić D, Kapetanović D, Dragun Z, Gjurčević E, Ćetković H, Teskeredžić E. 2013. Molecular characterisation and infection dynamics of Dentitruncus truttae from trout (Salmo trutta and Oncorhynchus mykiss) in Krka River, Croatia. Veterinary Parasitology, 197, 604–613. [Google Scholar]
  177. Verkuil YI, Nicolaus M, Ubels R, Dietz MW, Samplonius JM, Galema A, Kiekebos K, de Knijff P, Both C. 2022. DNA metabarcoding quantifies the relative biomass of arthropod taxa in songbird diets: Validation with camera-recorded diets. Ecology and Evolution, 12, e8881. [CrossRef] [PubMed] [Google Scholar]
  178. Verweyen L, Klimpel S, Palm HW. 2011. Molecular phylogeny of the Acanthocephala (class Palaeacanthocephala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS One, 6, e28285. [CrossRef] [PubMed] [Google Scholar]
  179. de Vos A, Faux CE, Marthick J, Dickinson J, Jarman SN. 2018. New determination of prey and parasite species for northern Indian Ocean blue whales. Frontiers in Marine Science, 5, 104. [CrossRef] [Google Scholar]
  180. Wayland MT, Vainio JK, Gibson DI, Herniou EA, Littlewood DT, Väinölä R. 2015. The systematics of Echinorhynchus Zoega in Müller, 1776 (Acanthocephala, Echinorhynchidae) elucidated by nuclear and mitochondrial sequence data from eight European taxa. Zookeys, 26, 25–52. [CrossRef] [Google Scholar]
  181. Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugár L, Herlyn H, Hankeln T. 2013. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Molecular Phylogenetics and Evolution, 66, 182–189. [CrossRef] [PubMed] [Google Scholar]
  182. Wey-Fabrizius AR, Herlyn H, Rieger B, Rosenkranz D, Witek A, Welch DBM, Ebersberger I, Hankeln T. 2014. Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PLoS One, 9, e88618. [CrossRef] [PubMed] [Google Scholar]
  183. Zheng C, Zhao Q, Li E, Zhao D, Sun S. 2022. Role of hypoxia in the behaviour, physiology, immunity and response mechanisms of crustaceans: A review. Reviews in Aquaculture, 14, 676–687. [CrossRef] [Google Scholar]
  184. Zimmermann S, Von Bohlen A, Messerschmidt J, Sures B. 2005. Accumulation of the precious metals platinum, palladium and rhodium from automobile catalytic converters in Paratenuisentis ambiguus as compared with its fish host, Anguilla anguilla. Journal of Helminthology, 79, 85–89. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.