Open Access
Volume 30, 2023
Article Number 49
Number of page(s) 10
Published online 12 November 2023
  1. Anderson JF, Magnarelli LA. 2008. Biology of Ticks. Infectious Disease Clinics of North America, 22, 195–215. [CrossRef] [PubMed] [Google Scholar]
  2. Azandémè-Hounmalon GY, Torto B, Fiaboe KKM, Subramanian S, Kreiter S, Martin T. 2016. Visual, vibratory, and olfactory cues affect interactions between the red spider mite Tetranychus evansi and its predator Phytoseiulus longipes. Journal of Pest Science, 89, 137–152. [CrossRef] [Google Scholar]
  3. Barth FG. 2016. A spider’s sense of touch: What to do with Myriads of tactile hairs? in The ecology of animal senses: matched filters for econical senses. Von-Der-Emde G, Warrant E, Editors. Springer International Publishing: Cham. p. 27–57. [CrossRef] [Google Scholar]
  4. Barth FG, Németh SS, Friedrich OC. 2004. Arthropod touch reception: Structure and mechanics of the basal part of a spider tactile hair. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190, 523–530. [Google Scholar]
  5. Brownell PH. 1977. Compressional and surface waves in sand: Used by desert scorpions to locate prey. Science, 197, 479–482. [CrossRef] [PubMed] [Google Scholar]
  6. Calderone NW, Lin S. 2001. Behavioural responses of Varroa destructor (Acari: Varroidae) to extracts of larvae, cocoons and brood food of worker and drone honey bees, Apis mellifera (Hymenoptera: Apidae). Physiological Entomology, 26, 341–350. [CrossRef] [Google Scholar]
  7. Calvo FJ, Knapp M, van Houten YM, Hoogerbrugge H, Belda JE. 2015. Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent? Experimental and Applied Acarology, 65, 419–433. [CrossRef] [PubMed] [Google Scholar]
  8. Chaisson KE, Hallem EA. 2012. Chemosensory behaviors of parasites. Trends in Parasitology, 28, 427–436. [CrossRef] [PubMed] [Google Scholar]
  9. Dicke M, Sabelis MW. 1988. How plants obtain predatory mites as bodyguards. Netherlands Journal of Zoology, 38, 148–165. [Google Scholar]
  10. Dillier FX, Fluri P, Imdorf A. 2006. Review of the orientation behaviour in the bee parasitic mite Varroa destructor: Sensory equipment and cell invasion behaviour. Revue Suisse de Zoologie, 113, 857–877. [CrossRef] [Google Scholar]
  11. Donzé G, Guerin PM. 1994. Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood. Behavioral Ecology and Sociobiology, 34, 305–319. [CrossRef] [Google Scholar]
  12. Donzé G, Schnyder-Candrian S, Bogdanov S, Diehl PA, Guerin PM, Kilchenman V, Monachon F. 1998. Aliphatic alcohols and aldehydes of the honey bee cocoon induce arrestment behavior in Varroa jacobsoni (Acari: Mesostigmata), an ectoparasite of Apis mellifera. Archives of Insect Biochemistry and Physiology, 37, 129–145. [CrossRef] [Google Scholar]
  13. Egan ME, Barth RH, Hanson FE. 1975. Chemically-mediated host selection in a parasitic mite. Nature, 257, 739. [Google Scholar]
  14. Fain A. 1994. Adaptation, specificity and host-parasite coevolution in mites (Acari). International Journal for Parasitology, 24, 1273–1283. [CrossRef] [PubMed] [Google Scholar]
  15. Finck A. 1981. The lyriform organ of the orb-weaving spider Araneous sericatus: Vibration sensitivity is altered by bending the leg. Journal of the Acoustical Society of America, 70, 231–233. [CrossRef] [Google Scholar]
  16. Frey E, Odemer R, Blum T, Rosenkranz P. 2013. Activation and interruption of the reproduction of Varroa destructor is triggered by host signals (Apis mellifera). Journal of Invertebrate Pathology, 113, 56–62. [CrossRef] [PubMed] [Google Scholar]
  17. Gherman CM, Mihalca AD, Dumitrache MO, Györke A, Oroian I, Sandor M, Cozma V. 2012. CO2 flagging – An improved method for the collection of questing ticks. Parasites & Vectors, 5, 1–7. [CrossRef] [PubMed] [Google Scholar]
  18. Halbritter DA, Mullens BA. 2011. Responses of Ornithonyssus sylviarum (Acari: Macronyssidae) and Menacanthus stramineus (Phthiraptera: Menoponidae) to gradients of temperature, light, and humidity, with comments on microhabitat selection on chickens. Journal of Medical Entomology, 48, 251–261. [CrossRef] [PubMed] [Google Scholar]
  19. Hall H, Bencsik M, Newton MI, Chandler D, Prince G, Dwyer S. 2022. Varroa destructor mites regularly generate ultra-short, high magnitude vibrational pulses. Entomologia Generalis, 42, 375–388. [CrossRef] [Google Scholar]
  20. Häußermann CK, Ziegelmann B, Bergmann P, Rosenkranz P. 2015. Male mites (Varroa destructor) perceive the female sex pheromone with the sensory pit organ on the front leg tarsi. Apidologie, 46, 771–778. [CrossRef] [Google Scholar]
  21. Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Dorbelet M, Wessel A. 2019. Biotremology: Studying Vibrational Behavior. Springer International Publishing: Cham. [CrossRef] [Google Scholar]
  22. Horn CJ, Mierzejewski MK, Luong LT. 2018. Host respiration rate and injury-derived cues drive host preference by an ectoparasite of fruit flies. Physiological and Biochemical Zoology, 91, 896–903. [CrossRef] [PubMed] [Google Scholar]
  23. Hoy MA. 2016. Agricultural acarology: Introduction to integrated mite management. Taylor & F Taylor & Francis: Boca Raton. [Google Scholar]
  24. Hunter PE, Rosario RMT. 1988. Associations of Mesostigma with other arthropods. Annual Review of Entomology, 33, 393–417. [CrossRef] [Google Scholar]
  25. Jalil M, Rodriguez JG. 1970. Studies of behavior of Macrocheles muscaedomesticae (Acarina: macrochelidae) with emphasis on its attraction to the house fly. Annals of the Entomological Society of America, 63, 738–744. [CrossRef] [PubMed] [Google Scholar]
  26. Kanbar G, Engels W. 2004. Number and position of wounds on honey bee (Apis mellifera) pupae infested with a single Varroa mite. Development, 101, 323–326. [Google Scholar]
  27. Kennedy JS. 1978. The concepts of olfactory “arrestment” and “attraction”. Physiological Entomology, 3, 91–98. [CrossRef] [Google Scholar]
  28. Le Conte Y, Arnold G, Trouiller J, Masson C, Chappe B, Ourisson G. 1989. Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science, 245, 638–639. [CrossRef] [PubMed] [Google Scholar]
  29. Le Conte Y, Arnold G. 1988. Étude du thermopréférendum de Varroa jacobsoni Oud. Apidologie, 19, 155–164. [CrossRef] [EDP Sciences] [Google Scholar]
  30. Li AY, Cook SC, Sonenshine DE, Posada-Florez F, Noble NII, Mowery J, Gulbronson CJ, Bauchan GR. 2019. Insights into the feeding behaviors and biomechanics of Varroa destructor mites on honey bee pupae using electropenetrography and histology. Journal of Insect Physiology, 119, 103950. [CrossRef] [PubMed] [Google Scholar]
  31. Maggi M, Damiani N, Ruffinengo S, De Jong D, Principal J, Eguaras M. 2010. Brood cell size of Apis mellifera modifies the reproductive behavior of Varroa destructor. Experimental Applied Acarology, 50, 269–279. [CrossRef] [PubMed] [Google Scholar]
  32. Migeon A, Nouguier E, Dorkeld F. 2010. Spider Mites Web: A comprehensive database for the Tetranychidae, in Trends in Acarology. Sabelis M, Bruin J, Editors. Springer: Dordrecht. p. 557–560. [CrossRef] [Google Scholar]
  33. Migeon A, Tixier M, Navajas M, Litskas VD, Stavrinides MC. 2019. A predator-prey system: Phytoseiulus persimilis (Acari: Phytoseiidae) and Tetranychus urticae (Acari: Tetranychidae): worldwide occurrence datasets. Acarologia, 59, 301–307. [CrossRef] [Google Scholar]
  34. Muleta MG, Schausberger P. 2013. Smells familiar: Group-joining decisions of predatory mites are mediated by olfactory cues of social familiarity. Animal Behaviour, 86, 507–512. [CrossRef] [PubMed] [Google Scholar]
  35. Nazzi F, Le Conte Y. 2016. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annual Review of Entomology, 61, 417–432. [CrossRef] [PubMed] [Google Scholar]
  36. Nazzi F, Milani N, Della Vedova G. 2004. A semiochemical from larval food influences the entrance of Varroa destructor into brood cells. Apidologie, 35, 403–410. [CrossRef] [EDP Sciences] [Google Scholar]
  37. Neumann P, Carreck NL. 2010. Honey bee colony losses. Journal of Apicultural Research, 49, 1–6. [CrossRef] [Google Scholar]
  38. Nganso BT, Mani K, Altman Y, Rafaeli A, Soroker V. 2020. How crucial is the functional pit organ for the Varroa mite? Insects, 11, 1–11. [Google Scholar]
  39. Niogret J, Lumaret JP, Bertrand M. 2006. Semiochemicals mediating host-finding behaviour in the phoretic association between Macrocheles saceri (Acari: Mesostigmata) and Scarabaeus species (Coleoptera: Scarabaeidae). Chemoecology, 16, 129–134. [CrossRef] [Google Scholar]
  40. Noldus LPJJ, Spink AJ, Tegelenbosch RAJ. 2001. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, & Computers, 33, 398–414. [CrossRef] [PubMed] [Google Scholar]
  41. Owen JP, Mullens BA. 2004. Influence of heat and vibration on the movement of the northern fowl mite (Acari: Macronyssidae). Journal of Medical Entomology, 41, 865–872. [CrossRef] [PubMed] [Google Scholar]
  42. Pernal SF, Baird DS, Birmingham AL, Higo HA, Slessor KN, Winston ML. 2005. Semiochemicals influencing the host-finding behaviour of Varroa destructor. Experimental Applied Acarology, 37, 1–26. [CrossRef] [PubMed] [Google Scholar]
  43. Piou V, Urrutia V, Laffont C, Hemptinne JL, Vétillard A. 2019. The nature of the arena surface affects the outcome of host-finding behavior bioassays in Varroa destructor (Anderson & Trueman). Parasitology Research, 118, 2935–2943. [CrossRef] [PubMed] [Google Scholar]
  44. Piou V, Vilarem C, Rein C, Sprau L, Vétillard A. 2022. Standard methods for dissection of Varroa destructor Females. Insects, 13, 37. [Google Scholar]
  45. Plettner E, Eliash N, Singh NK, Pinnelli GR, Soroker V. 2017. The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie, 48, 78–92. [CrossRef] [Google Scholar]
  46. Posada-Florez F, Ryabov E, Heerman MC, Chen Y, Evans JD, Sonenshine DE, Cook SC. 2020. Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. Plos One, 15, 1–13. [Google Scholar]
  47. Powell G, Tosh CR, Hardie J. 2006. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annual Review of Entomology, 51, 309–330. [CrossRef] [PubMed] [Google Scholar]
  48. Qin Y, Zhao J, Zhou L, Huang ZY. 2006. Electronic monitoring of feeding behaviour of Varroa mites on honey bees. Journal of Apicultural Research, 45, 157–158. [CrossRef] [Google Scholar]
  49. R Core team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. [Google Scholar]
  50. Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D, Engelsdorp D Van. 2019. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, 116, 1792–1801. [CrossRef] [PubMed] [Google Scholar]
  51. Rickli M, Guerin PM, Diehl PA. 1992. Palmitic acid released from honeybee worker larvae attracts the parasitic mite Varroa jacobsoni on a servosphere. Naturwissenschaften, 79, 320–322. [CrossRef] [Google Scholar]
  52. Rosenkranz P, Aumeier P, Ziegelmann B. 2010. Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103(Suppl), S96–S119. [CrossRef] [PubMed] [Google Scholar]
  53. Royalty RN, Phelan PL, Hall FR. 1993. Comparative effects of form, colour, and pheromone of twospotted spider mite quiescent deutonymphs on male guarding behaviour. Physiological Entomology, 18, 303–316. [CrossRef] [Google Scholar]
  54. Santer RD, Hebets EA. 2009. Tactile learning by a whip spider, Phrynus marginemaculatus C.L. Koch (Arachnida, Amblypygi). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195, 393–399. [CrossRef] [PubMed] [Google Scholar]
  55. Sato Y, Saito Y. 2006. Nest sanitation in social spider mites: Interspecific differences in defecation behavior. Ethology, 112, 664–669. [CrossRef] [Google Scholar]
  56. Su Y, Zhang B, Xu X. 2021. Chemosensory systems in predatory mites: From ecology to genome. Systematic and Applied Acarology, 26, 852–865. [CrossRef] [Google Scholar]
  57. Tabart J, Colin ME, Carayon JL, Tene N, Payre B, Vetillard A. 2013. Artificial feeding of Varroa destructor through a chitosan membrane: A tool for studying the host-microparasite relationship. Experimental and Applied Acarology, 61, 107–118. [CrossRef] [PubMed] [Google Scholar]
  58. Takabayashi J, Dicke M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Science, 1, 109–113. [CrossRef] [Google Scholar]
  59. Tjallingii WF. 1994. Sieve element acceptance by aphids. European Journal of Entomology, 91, 47–52. [Google Scholar]
  60. Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, Chantawannakul P, McAfee A. 2020. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends in Parasitology, 36, 592–606. [CrossRef] [PubMed] [Google Scholar]
  61. Uetz GW, Roberts JA. 2002. Multisensory cues and multimodal communication in spiders: Insights from video/audio playback studies. Brain, Behavior and Evolution, 59, 222–230. [CrossRef] [PubMed] [Google Scholar]
  62. Vervaet L, De Vis R, De Clercq P, Van Leeuwen T. 2021. Is the emerging mite pest Aculops lycopersici controllable? Global and genome-based insights in its biology and management. Pest Management Science, 77, 2635–2644. [CrossRef] [PubMed] [Google Scholar]
  63. Vilarem C, Piou V, Vogelweith F, Vétillard A. 2021. Varroa destructor from the laboratory to the field: Control, biocontrol and IPM perspectives – a review. Insects, 12, 800. [CrossRef] [PubMed] [Google Scholar]
  64. Waladde SM, Young AS, Morzaria SP. 1996. Artificial feeding of ixodid ticks. Parasitology Today, 12, 272–278. [CrossRef] [Google Scholar]
  65. Waladde SM, Rice MJ. 1982. The Sensory Basis of Tick Feeding Behaviour, in Physiol. Ticks. Obenchain FD, Galun R, Editors. Elsevier, Pergamon Press Ltd: Amsterdam. p. 71–118. [CrossRef] [Google Scholar]
  66. Walter DE, Proctor HC. 1999. Mites : Ecology, Evolution & Behaviour. Springer International Publishing: Dordrecht. [CrossRef] [Google Scholar]
  67. Wang K, Zhang J, Liu L, Chen D, Song H, Wang Y, Niu S, Han Z, Ren L. 2019. Vibrational receptor of scorpion (Heterometrus petersii): The basitarsal compound slit sensilla. Journal of Bionic Engineering, 16, 76–87. [CrossRef] [Google Scholar]
  68. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing: Cham. [Google Scholar]
  69. Van Wijk M, Wadman WJ, Sabelis MW. 2006. Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis. Experimental and Applied Acarology, 40, 217–229. [CrossRef] [PubMed] [Google Scholar]
  70. Yoder JA, Pekins PJ, Lorenz AL, Nelson BW. 2017. Larval behaviour of the winter tick, Dermacentor albipictus (Acari:Ixodidae): evaluation of CO2 (dry ice), and short- and long-range attractants by bioassay. International Journal of Acarology, 43, 187–193. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.