Open Access
Issue
Parasite
Volume 30, 2023
Article Number 28
Number of page(s) 17
DOI https://doi.org/10.1051/parasite/2023028
Published online 06 July 2023
  1. Aalvik IM, Moland E, Olsen EM, Stenseth NC. 2015. Spatial ecology of coastal Atlantic cod Gadus morhua associated with parasite load. Journal of Fish Biology, 87(2), 449–464. [CrossRef] [PubMed] [Google Scholar]
  2. Al-Zubaidy AB. 2011. Digenetic Trematodes (Bucephalidae: Bucephalus Baer, 1827 and Rhipidocotyle Diesing, 1858) from Red Sea fishes, Yemen Coast. Journal of King Abdulaziz University-Marine Sciences, 22(1), 45–64. [CrossRef] [Google Scholar]
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. [CrossRef] [Google Scholar]
  4. Bartoli P, Bray RA. 2005. Two species of the fish digenean genus Rhipidocotyle Diesing, 1858 (Bucephalidae) reported for the first time from European seas. Systematic Parasitology, 62(1), 47–58. [CrossRef] [PubMed] [Google Scholar]
  5. Berra TM, Au R-J. 1978. Incidence of black spot disease in fishes in Cedar Fork Creek, Ohio. Journal of Ohio Academy of Sciences, 78(6), 318–322. [Google Scholar]
  6. Blakeslee AMH, Byers JE, Lesser MP. 2008. Solving cryptogenic histories using host and parasite molecular genetics: the resolution of Littorina littorea’s North American origin. Molecular Ecology, 17(16), 3684–3696. [CrossRef] [PubMed] [Google Scholar]
  7. Borges JN, Skov J, Bahlool QZM, Møller OS, Kania PW, Santos CP, Buchmann K. 2015. Viability of Cryptocotyle lingua metacercariae from Atlantic cod (Gadus morhua) after exposure to freezing and heating in the temperature range from −80 C to 100 C. Food Control, 50, 371–377. [CrossRef] [Google Scholar]
  8. Bower SM. 2006. Parasitic Diseases of Shellfish, in Fish Diseases and Disorders. Woo PTK, Editor. CABI International. p. 629–677. [Google Scholar]
  9. Bowles J, Hope M, Tiu WU, Liu X, McManus DP. 1993. Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Tropica, 55(4), 217–229. [PubMed] [Google Scholar]
  10. Buchmann K. 2007. An introduction to fish parasitological methods-classical and molecular techniques, vol 1, Ed. Biofolia/Biofolia Press: Frederiksberg. p. 130. [Google Scholar]
  11. Burton D. 2002. The physiology of flatfish chromatophores. Microscopy Research and Technique, 58(6), 481–487. [CrossRef] [PubMed] [Google Scholar]
  12. Bush AO, Lafferty KD, Lotz JM, Shostak AK. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83(4), 575–583. [CrossRef] [Google Scholar]
  13. Casalins LM, Arbetman MP, Viozzi GP, Flores VR. 2020. A new species of Cryptocotyle (Digenea: Heterophyidae) infecting Kelp Gull and a galaxiid fish in Patagonian freshwater environments: Morphological and molecular analyses. Journal of Parasitology, 106(2), 203–210. [CrossRef] [PubMed] [Google Scholar]
  14. Chai JY, Darwin Murrell K, Lymbery AJ. 2005. Fish-borne parasitic zoonoses: status and issues. International Journal for Parasitology, 35(11–12), 1233–1254. [CrossRef] [PubMed] [Google Scholar]
  15. Chai JY, Jung B-K. 2017. Fishborne zoonotic heterophyid infections: An update. Food and Waterborne Parasitology, 8–9, 33–63. [CrossRef] [PubMed] [Google Scholar]
  16. Chai JY, Sohn W-M, Na B-K, Jeoung H-G, Sinuon M, Socheat D. 2016. Stellantchasmus falcatus (Digenea: Heterophyidae) in Cambodia: Discovery of metacercariae in mullets and recovery of adult flukes in an experimental hamster. Korean Journal of Parasitology, 54(4), 537–541. [CrossRef] [PubMed] [Google Scholar]
  17. Chapman JA, Hunter GW. 1954. Studies on host-parasite reactions. VII. The pigment cells surrounding the metacercarial cysts of Cryptocotyle lingua in the cunner, Tautogolabrus adspersus (Walbaum). Transactions of the American Microscopical Society, 73(1), 28–36. [CrossRef] [Google Scholar]
  18. Clement M, Snell Q, Walker P, Posada D, Crandall K. 2002. TCS: estimating gene genealogies, in Parallel and Distributed Processing Symposium International. Society IC, Editor. Institute of Electronical and Electronics Engineers: Ft. Lauderdale, FL, USA. p. 0180–0184. [Google Scholar]
  19. Cresson P, Chouvelon T, Bustamante P, Bănaru D, Baudrier J, Le Loc'h F, Mauffret A, Mialet B, Spitz J, Wessel N, Briand MJ, Denamiel M, Doray M, Guillou G, Jadaud A, Lazard C, Prieur S, Rouquette M, Saraux C, Serre S, Timmerman C-A, Verin Y, Harmelin-Vivien M. 2020. Primary production and depth drive different trophic structure and functioning of fish assemblages in French marine ecosystems. Progress in Oceanography, 186, 102343. [CrossRef] [Google Scholar]
  20. Duflot M, Gay M, Midelet G, Kania PW, Buchmann K. 2021. Morphological and molecular identification of Cryptocotyle lingua metacercariae isolated from Atlantic cod (Gadus morhua) from Danish seas and whiting (Merlangius merlangus) from the English Channel. Parasitology Research, 120, 3417–3427. [CrossRef] [PubMed] [Google Scholar]
  21. Duflot M, Midelet G, Bourgau O, Buchmann K, Gay M. 2021. Optimization of tools for the detection and identification of Cryptocotyle metacercariae in fish: Digestion method and viability studies. Journal of Fish Diseases, 00, 1–8. [Google Scholar]
  22. Duflot M, Setbon T, Midelet G, Brauge T, Gay M. 2021. A review of molecular identification tools for the Opisthorchioidea. Journal of Microbiological Methods, 187, 106258. [CrossRef] [PubMed] [Google Scholar]
  23. El-Mayas H, Kearn GC. 1995. In vitro excystment of the metacercaria of Cryptocotyle concavum from the common goby Pomatoschistus microps. Journal of Helminthology, 69, 285–297. [CrossRef] [Google Scholar]
  24. Elmer F, Kohl Z, Johnson P, Peachey R. 2019. Black spot syndrome in reef fishes: using archival imagery and field surveys to characterize spatial and temporal distribution in the Caribbean. Coral Reefs, 38, 1303–1315. [CrossRef] [Google Scholar]
  25. Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. [CrossRef] [PubMed] [Google Scholar]
  26. Fu Y-X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915–925. [CrossRef] [PubMed] [Google Scholar]
  27. Gibson DI. 1996. Guide to the Parasites of Fishes of Canada, Vol. IV. Canadian Special Publication of Fisheries and Aquatic Sciences: Subscription Office, NRC Research Press, National Research Council of Canada, Ottawa, Ontario, Canada. p. 382. [Google Scholar]
  28. Gibson DI, Jones A, Bray RA. 2002. Keys to the Trematoda. Folia Parasitologica, 50(1), 56–56. [Google Scholar]
  29. Gonchar A. 2020. Genetic diversity in monoxenous and trixenous digeneans sharing one molluscan host species. Parazitologiya, 54(6), 491–503. [CrossRef] [Google Scholar]
  30. Goncharov SL, Soroka NM, Pryima OB, Dubovyi AI. 2017. Distribution of trematodes Cryptokotyle (Trematoda, Heterophyidae), in fish of the family Gobiidae in the estuary waters and the Black Sea in Southern Ukraine. Vestnik Zoologii, 51(5), 393–400. [CrossRef] [Google Scholar]
  31. Gorbushin A, Tolstenkov O. 2020. Cryptocotyle lingua curated transcriptome assembly (v1.2.2). Https://Www.Ncbi.Nlm.Nih.Gov/Nuccore/ figshare. [Google Scholar]
  32. Groenewold S, Berghahn R, Zander CD. 1996. Parasite communities of four fish species in the Wadden Sea and the role of fish discarded by the shrimp fisheries in parasite transmission. Helgoland Marine Research, 50(1), 69–85. [Google Scholar]
  33. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. [Google Scholar]
  34. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. [CrossRef] [PubMed] [Google Scholar]
  35. ICES. 2019. Dab (Limanda limanda) in Subarea 4 and Division 3.a (North Sea, Skagerrak and Kattegat). ICES. [Google Scholar]
  36. ICES. 2021. Herring Assessment Working Group for the Area South of 62 N (HAWG). ICES Scientific Reports, 3(12), 779. [Google Scholar]
  37. ICES. 2021. Plaice (Pleuronectes platessa) in Subarea 4 (North Sea) and Subdivision 20 (Skagerrak). Recurrent Advice: ICES Advice. [Google Scholar]
  38. ICES. 2021. Whiting (Merlangius merlangus) in Subarea 4 and Division 7.d (North Sea and eastern English Channel). [Google Scholar]
  39. Ifremer. 2019. International Bottom Trawl Survey (IBTS) 2019 [Campagne océanographique]. [Google Scholar]
  40. Ifremer. 2020. International Bottom Trawl Survey (IBTS) 2020 [Campagne océanographique]. [Google Scholar]
  41. Kacem H, Blasco S, Foronda P, Miquel J. 2017. Sperm characters of Timoniella imbutiforme (Digenea, Opisthorchioidea, Cryptogonimidae), a parasite of the European seabass Dicentrarchus labrax. Zoologischer Anzeiger, 271, 49–56. [Google Scholar]
  42. Kinkelin PD, Morand M, Hedrick RP, Michel C. 2014. Parasites et Parasitoses des poissons. Ed. Quae. [Google Scholar]
  43. Kohl Z, Calhoun D, Elmer F, Peachey R, Leslie K, Tkach V, Kinsella M, Johnson P. 2019. Black-spot syndrome in Caribbean fishes linked to trematode parasite infection (Scaphanocephalus expansus). Coral Reefs, 38, 917–930. [CrossRef] [Google Scholar]
  44. Kristoffersen R. 1991. Occurrence of the digenean Cryptocotyle lingua in farmed Arctic charr Salvelinus alpinus and periwinkles Littorina littorea sampled close to charr farms in northern Norway. Diseases of Aquatic Organisms, 12(1), 59–65. [Google Scholar]
  45. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. [CrossRef] [PubMed] [Google Scholar]
  46. Kuzmina TA, Tkach VV, Spraker TR, Lyons ET, Kudlai O. 2018. Digeneans of northern fur seals Callorhinus ursinus (Pinnipedia: Otariidae) from five subpopulations on St. Paul Island, Alaska. Parasitology Research, 117(4), 1079–1086. [CrossRef] [PubMed] [Google Scholar]
  47. Le TH, Nguyen KT, Nguyen NT, Doan HT, Dung DT, Blair D. 2017. The ribosomal transcription units of Haplorchis pumilio and H. taichui and the use of 28S rDNA sequences for phylogenetic identification of common heterophyids in Vietnam. Parasites & Vectors, 10(1), 17. [CrossRef] [PubMed] [Google Scholar]
  48. Le TH, Pham KLT, Doan HTT, Le TKX, Nguyen KT, Lawton SP. 2020. Description and phylogenetic analyses of ribosomal transcription units from species of Fasciolidae (Platyhelminthes: Digenea). Journal of Helminthology, 94, e136. [CrossRef] [PubMed] [Google Scholar]
  49. Lee D, Choe S, Park H, Jeon HK, Chai JY, Sohn WM, Yong TS, Min DY, Rim HJ, Eom KS. 2013. Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean Journal of Parasitology, 51(6), 719–726. [CrossRef] [Google Scholar]
  50. Lee S-U, Huh S. 2004. Variation of nuclear and mitochondrial DNAs in Korean and Chinese isolates of Clonorchis sinensis. Korean Journal of Parasitology, 42(3), 145–148. [CrossRef] [PubMed] [Google Scholar]
  51. Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. [Google Scholar]
  52. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O. 2019. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Research, 47(W1), W260–W265. [CrossRef] [PubMed] [Google Scholar]
  53. Linton E. 1915. Tocotrema lingua (Creplin) The adult sage of a skin parasite of the cunner and other fishes of the Woods Hole region. Journal of Parasitology, 1(3), 107–158. [Google Scholar]
  54. Lynam Christopher P, Llope M, Möllmann C, Helaouët P, Bayliss-Brown Georgia A, Stenseth Nils C. 2017. Interaction between top-down and bottom-up control in marine food webs. Proceedings of the National Academy of Sciences, 114(8), 1952–1957. [CrossRef] [PubMed] [Google Scholar]
  55. Lysne DA, Hemmingsen W, Skorping A. 1995. Pepsin digestion reveals both previous and present infections of metacercariae in the skin of fish. Fisheries Research, 24(2), 173–177. [CrossRef] [Google Scholar]
  56. Mahdy OA, Mahmoud MA, Abdelsalam M. 2020. Morphological characterization and histopathological alterations of homologs Heterophyid metacercarial coinfection in farmed mullets and experimental infected pigeons. Aquaculture International, 28(6), 2491–2504. [CrossRef] [Google Scholar]
  57. Malek M. 2001. Effects of the digenean parasites Labratrema minimus and Cryptocotyle concavum on the growth parameters of Pomatoschistus microps and P. minutus from Southwest Wales. Parasitology Research, 87(4), 349–355. [CrossRef] [PubMed] [Google Scholar]
  58. Matthews RA, Matthews BF. 1993. Cryptocotyle lingua in mullet, Chelon labrosus; significance of metacercarial excretory proteins in the stimulation of the immune response. Journal of Helminthology, 67(1), 1–9. [CrossRef] [PubMed] [Google Scholar]
  59. McQueen A, Mackenzie K, Roberts RJ, Young H. 1973. Studies on the skin of plaice (Pleuronectes platessa L.): III. The effect of temperature on the inflammatory response to the metacercariae of Cryptocotyle lingua (Creplin, 1825) (Digenea: Heterophyidae). Journal of Fish Biology, 5(2), 241–247. [CrossRef] [Google Scholar]
  60. Nicoll W. 1914. The Trematode parasites of fishes from the English Channel. Journal of the Marine Biological Association of the United Kingdom, 10(3), 466–505. [CrossRef] [Google Scholar]
  61. Paperna I, Dzikowski R. 2006. Digenea (Phylum Platyhelminthes), in Fish Diseases and Disorders. Woo PTK, Editor. CABI International: NY. p. 345–390. [Google Scholar]
  62. Potter IC, Gardner DC, Claridge PN. 1988. Age composition, growth, movements, meristics and parasites of the whiting, Merlangius merlangus, in the Severn Estuary and Bristol Channel. Journal of the Marine Biological Association of the United Kingdom, 68(2), 295–313. [CrossRef] [Google Scholar]
  63. Presswell B, Bennett J. 2022. Gastrointestinal helminth parasites of the threatened Australasian crested grebe (Podiceps cristatus australis, Gould 1844) in New Zealand, with descriptions of Baruscapillaria kamanae n. sp. (Nematoda: Trichuridae) and Cryptocotyle micromorpha n. sp. (Trematoda: Opisthorchiidae). Systematic Parasitology, 99(2), 217–239. [CrossRef] [PubMed] [Google Scholar]
  64. Qiu Y-Y, Gao Y, Li Y, Ma X-X, Lv Q-B, Hu Y, Qiu H-Y, Chang Q-C, Wang C-R. 2020. Comparative analyses of complete ribosomal DNA sequences of Clonorchis sinensis and Metorchis orientalis: IGS sequences may provide a novel genetic marker for intraspecific variation. Infection, Genetics and Evolution, 78, 104125. [CrossRef] [PubMed] [Google Scholar]
  65. Rahimian H. 2007. Parasites of fingerling herring Clupea harengus L.: Ecology and fine morphology. Journal of Helminthology, 81(2), 199–217. [CrossRef] [PubMed] [Google Scholar]
  66. Ransom BH. 1920. Synopsis of the Hetrophyidae with descriptions of a new genus and five new species. U.S. National Museum, 57(2322), 527–552. [CrossRef] [Google Scholar]
  67. Rea JG, Irwin SWB. 1991. Behavioural responses of the cercariae of Cryptocotyle lingua (Digenea: Heterophyidae) to computer-controlled shadow sequences. Parasitology, 103(3), 471–477. [CrossRef] [PubMed] [Google Scholar]
  68. Reaghi S, Haghighi A, Harandi MF, Spotin A, Arzamani K, Rouhani S. 2016. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran. Veterinary World, 9(9), 1034–1038. [CrossRef] [PubMed] [Google Scholar]
  69. Rees FG, Day MF. 1976. The origin and development of the epidermis and associated structures in the cercaria of Cryptocotyle lingua (Creplin) (Digenea: Heterophyidae) from Littorina littorea (L.). Proceedings of the Royal Society of London. Series B, Biological Sciences, 192(1108), 299–321. [PubMed] [Google Scholar]
  70. Rees G. 1974. The ultrastructure of the body wall and associated structures of the cercaria of Cryptocotyle lingua (Creplin) (Digenea: Heterophyidae) from Littorina littorea (L.). Zeitschrift für Parasitenkunde, 44(3), 239–265. [CrossRef] [PubMed] [Google Scholar]
  71. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299–3302. [CrossRef] [PubMed] [Google Scholar]
  72. Saari S, Näreaho A, Nikander S. 2019. Chapter 3 – Trematoda (Flukes), in Canine Parasites and Parasitic Diseases. Saari S, Näreaho A, Nikander S, Editors. Academic Press. p. 35–54. [CrossRef] [Google Scholar]
  73. Sándor D, Molnár K, Gibson DI, Székely C, Majoros G, Cech G. 2017. An investigation of the host-specificity of metacercariae of species of Apophallus (Digenea: Heterophyidae) in freshwater fishes using morphological, experimental and molecular methods. Parasitology Research, 116(11), 3065–3076. [CrossRef] [PubMed] [Google Scholar]
  74. Santos CP, Borges JN. 2020. Current knowledge of small flukes (Digenea: Heterophyidae) from South America. Korean Journal of Parasitology, 58(4), 373–386. [CrossRef] [PubMed] [Google Scholar]
  75. Scholz T, Aguirre-Macedo ML, Salgado-Maldonado G. 2001. Trematodes of the family Heterophyidae (Digenea) in Mexico: A review of species and new host and geographical records. Journal of Natural History, 35(12), 1733–1772. [CrossRef] [Google Scholar]
  76. Scholz T, Ditrich O, Giboda M. 2016. Larval stages of medically important flukes (Trematoda) from Vientiane province, Laos. Annales de Parasitologie Humaine et Comparée, 65(5–6), 238–243. [Google Scholar]
  77. Shumenko PG, Tatonova YV, Besprozvannykh VV. 2017. Metagonimus suifunensis sp. n. (Trematoda: Heterophyidae) from the Russian Southern Far East: Morphology, life cycle, and molecular data. Parasitology International, 66(1), 982–991. [CrossRef] [PubMed] [Google Scholar]
  78. Sindermann CJ, Farrin AE. 1962. Ecological studies of Cryptocotyle lingua (Trematoda: heterophyidae) whose larvae cause “pigment spots” of marine fish. Ecological Society of America, 43(1), 69–75. [Google Scholar]
  79. Sokolov S, Frolov E, Atopkin D. 2020. An opisthorchiid concept of the genus Liliatrema (Trematoda: Plagiorchiida: Opisthorchioidea): an unexpected systematic position. Zoological Journal of the Linnean Society, 1(192), 24–42. https://doi.org/10.1093/zoolinnean/zlaa093/5902681. [Google Scholar]
  80. Stunkard HW. 1929. The life history of Cryptocotyle lingua (Creplin) with notes on the physiology of the metacercariae. Journal of Morphology and Physiology, 50(1), 143–191. [Google Scholar]
  81. Suleman MJ, Khan MS, Sun MM, Muhammad N, He JJ, Zhu XQ. 2019. Mitochondrial and nuclear ribosomal DNA dataset suggests that Hepatiarius sudarikovi Feizullaev, 1961 is a member of the genus Opisthorchis Blanchard, 1895 (Digenea: Opisthorchiidae). Parasitology Research, 118(3), 807–815. [CrossRef] [PubMed] [Google Scholar]
  82. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics Society of America, 123(3), 585–595. [Google Scholar]
  83. Tatonova YV, Besprozvannykh VV. 2019. Description of a new species, Cryptocotyle lata sp. nov., and discussion of the phylogenetic relationships in Opisthorchioidea. Parasitology International, 72, 101939. [CrossRef] [PubMed] [Google Scholar]
  84. Thaenkham U, Nuamtanong S, Vonghachack Y, Yoonuan T, Sanguankiat S, Dekumyoy P, Prommasack B, Kobayashi J, Waikagul J. 2011. Discovery of Opisthorchis lobatus (Trematoda: Opisthorchiidae): A new record of small liver flukes in the greater mekong sub-region. Journal of Parasitology, 97(6), 1152–1158. [CrossRef] [PubMed] [Google Scholar]
  85. Van Den Broek WL. 1979. Infection of estuarine fish populations by Cryptocotyle lingua (Creplin). Journal of Fish Biology, 14(4), 395–402. [CrossRef] [Google Scholar]
  86. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer. Available from: https://ggplot2.tidyverse.org. [Google Scholar]
  87. Williams H, Jones A. 1994. Parasitic worms of fish. Taylor & Francis. p. 593. [Google Scholar]
  88. Wood BP, Matthews RA. 1987. The immune response of the thick-lipped grey mullet, Chelon labrosus (Risso, 1826), to metacercarial infections of Cryptocotyle lingua (Creplin, 1825). Journal of Fish Biology, 31, 175–183. [CrossRef] [Google Scholar]
  89. Wood BP, Matthews RA. 1987. In vivo study of the effect of temperature and light on the melanisation of cysts of Cryptocotyle lingua (Creplin, 1825) in the mullet, Chelon labrosus (Risso, 1826). Aquaculture, 67(1), 221–221. [CrossRef] [Google Scholar]
  90. WoRMS Editorial Board. 2021. World Register of Marine Species. WoRMS: VLIZ. [Google Scholar]
  91. Zander CD, Koçoglu O, Skroblies M, Strohbach U. 2002. Parasite populations and communities from the shallow littoral of the Orther Bight (Fehmarn, SW Baltic Sea). Parasitology Research, 88(8), 734–744. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.