Open Access
Issue
Parasite
Volume 29, 2022
Article Number 22
Number of page(s) 17
DOI https://doi.org/10.1051/parasite/2022022
Published online 27 April 2022
  1. Alzohairy A. 2011. BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2, 60–61. [Google Scholar]
  2. Anderson JR, Trainer DO, Defoliart GR. 1962. Natural and experimental transmission of the waterfowl parasite, Leucocytozoon simondi M. & L, in Wisconsin. Zoonoses Research, 1, 155–164. [PubMed] [Google Scholar]
  3. Anisuzzaman A. 2018. Prevalence and pathology of haemoprotozoan infection in chicken. Bangladesh Journal of Agricultural Research, 6, 79–85. [Google Scholar]
  4. Bensch SJ, Pérez-Tris J, Waldenstro M, Hellgren O. 2004. Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: Multiple cases of cryptic speciation. Evolution, 58, 1617–1621. [CrossRef] [PubMed] [Google Scholar]
  5. Bensch S, Hellgren O, Pérez-Tris J. 2009. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, 9, 1353–1358. [CrossRef] [PubMed] [Google Scholar]
  6. Buranapim N, Chaiwisit P, Wangkawan A, Tiwananthagorn S. 2019. A survey on blood parasites of birds in Chiang Mai province. Veterinary Integrative Sciences, 17, 65–73. [Google Scholar]
  7. Chang HH, Moss EL, Park DJ, Ndiaye D, Mboup S, Volkman SK, Sabeti PC, Wirth DF, Neafsey DE, Hartl DL. 2013. Malaria life cycle intensifies both natural selection and random genetic drift. Proceedings of the National Academy of Sciences of the United States of America, 110, 20129–20134. [CrossRef] [PubMed] [Google Scholar]
  8. Chawengkirttikul R, Junsiri W, Watthanadirek A, Poolsawat N, Minsakorn S, Srionrod N, Anuracpreeda P. 2021. Molecular detection and genetic diversity of Leucocytozoon sabrazesi in chickens in Thailand. Scientific Reports, 11, 16686. [CrossRef] [PubMed] [Google Scholar]
  9. Choi Y, Chan AP. 2015. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31, 2745–2747. [CrossRef] [PubMed] [Google Scholar]
  10. Clamp M, Cuff J, Searle SM, Barton GJ. 2004. The Jalview Java alignment editor. Bioinformatics, 20, 426–427. [CrossRef] [PubMed] [Google Scholar]
  11. Dagan T, Talmor Y, Graur D. 2002. Ratios of radical to conservative amino acid replacement are affected by mutational and compositional factors and may not be indicative of positive Darwinian selection. Molecular Biology and Evolution, 19, 1022–1025. [CrossRef] [PubMed] [Google Scholar]
  12. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. [CrossRef] [PubMed] [Google Scholar]
  13. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. [CrossRef] [PubMed] [Google Scholar]
  14. Ferretti L, Raineri E, Ramos-Onsins S. 2012. Neutrality tests for sequences with missing data. Genetics, 191, 1397–1401. [CrossRef] [PubMed] [Google Scholar]
  15. Fu FX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925. [CrossRef] [PubMed] [Google Scholar]
  16. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. [Google Scholar]
  17. Hellgren O, Waldenström J, Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology, 90, 797–802. [CrossRef] [PubMed] [Google Scholar]
  18. Hellgren O, Križanauskienė A, Valkiūnas G, Bensch S. 2007. Diversity and phylogeny of mitochondrial cytochrome b lineages from six morphospecies of avian Haemoproteus (Haemosporida: Haemoproteidae). Journal of Parasitology, 93, 889–896. [CrossRef] [PubMed] [Google Scholar]
  19. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. [CrossRef] [PubMed] [Google Scholar]
  20. Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ, Milensky C, Olson SL, Peirce MA, Fleischer RC. 2007. Prevalence and diversity of avian hematozoan parasites in Asia: a regional survey. Journal of Wildlife Diseases, 43, 382–398. [CrossRef] [PubMed] [Google Scholar]
  21. Jumpato W, Tangkawanit U, Wongpakam K, Pramual P. 2019. Molecular detection of Leucocytozoon (Apicomplexa: Haemosporida) in black flies (Diptera: Simuliidae) from Thailand. Acta Tropica, 190, 228–234. [CrossRef] [PubMed] [Google Scholar]
  22. Junsiri W, Watthanadirek A, Poolsawat N, Kaewmongkol S, Jittapalapong S, Chawengkirttikul R, Anuracpreeda P. 2020. Molecular detection and genetic diversity of Anaplasma marginale based on the major surface protein genes in Thailand. Acta Tropica, 105338. [CrossRef] [PubMed] [Google Scholar]
  23. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. [CrossRef] [PubMed] [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. [CrossRef] [PubMed] [Google Scholar]
  25. Leigh J, Bryant D. 2015. PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. [CrossRef] [Google Scholar]
  26. Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452. [CrossRef] [PubMed] [Google Scholar]
  27. Martinsen ES, Perkins SL, Schall JJ. 2008. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Molecular Phylogenetics and Evolution, 47, 261–273. [CrossRef] [PubMed] [Google Scholar]
  28. Mirzaei F, Siyadatpanah A, Norouzi R, Pournasir S, Nissapatorn V, Pereira MD. 2020. Blood parasites in domestic birds in Central Iran. Veterinary Sciences, 7, 126. [CrossRef] [Google Scholar]
  29. Morii T, Shiihara T, Lee YC, Manuel MF, Nakamura K, Iijima T, Horii K. 1981. Seroimmunological and parasitological surveys of Leucocytozoon caulleryi infection in chickens in several Asian countries. International Journal for Parasitology, 11, 187–190. [CrossRef] [PubMed] [Google Scholar]
  30. Nekrutenko A, Makova KD, Li WH. 2002. The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Research, 12, 198–202. [CrossRef] [PubMed] [Google Scholar]
  31. Outlaw DC, Ricklefs RE. 2011. Rerooting the evolutionary tree of malaria parasites. Proceedings of the National Academy of Sciences of the United States of America, 108, 13183–13187. [CrossRef] [PubMed] [Google Scholar]
  32. Pacheco MA, Cepeda AS, Bernotienė R, Lotta IA, Matta NE, Valkiūnas G, Escalante AA. 2018. Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. International Journal for Parasitology, 48, 657–670. [CrossRef] [PubMed] [Google Scholar]
  33. Pacheco MA, Matta NE, Valkiūnas G, Parker PG, Mello B, Stanley CE Jr, Lentino M, Garcia A, Maria A, Cranfield M, Kosakovsky P, Sergei L, Escalante AA. 2018. Mode and rate of evolution of haemosporidian mitochondrial genomes: Timing the radiation of avian parasites. Molecular Biology and Evolution, 35, 383–403. [CrossRef] [PubMed] [Google Scholar]
  34. Pattaradilokrat S, Tiyamanee W, Simpalipan P, Kaewthamasorn M, Saiwichai T, Li J, Harnyuttanakorn P. 2015. Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand. Veterinary Parasitology, 210, 1–9. [CrossRef] [PubMed] [Google Scholar]
  35. Piratae S, Vaisusuk K, Chatan W. 2021. Prevalence and molecular identification of Leucocytozoon spp. in fighting cocks (Gallus gallus) in Thailand. Parasitology Research, 120, 2149–2155. [CrossRef] [PubMed] [Google Scholar]
  36. Pramual P, Tangkawanit U, Kunprom C, Vaisusuk K, Chatan W, Wongpakam K, Thongboonma S. 2020. Seasonal population dynamics and a role as natural vector of Leucocytozoon of black fly, Simulium chumpornense Takaoka & Kuvangkadilok. Acta Tropica, 211, 105617. [CrossRef] [PubMed] [Google Scholar]
  37. Reeves AB, Smith MM, Meixell BW, Fleskes JP, Ramey AM. 2015. Genetic diversity and host specificity varies across three genera of blood parasites in ducks of the Pacific Americas Flyway. PLoS One, 10, e0116661. [CrossRef] [PubMed] [Google Scholar]
  38. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC. 2004. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science, 303, 223–226. [CrossRef] [PubMed] [Google Scholar]
  39. Sato Y, Hagihara M, Yamaguchi T, Yukawa M, Murata K. 2007. Phylogenetic comparison of Leucocytozoon spp. from wild birds of Japan. Journal of Veterinary Medical Science, 69, 55–59. [CrossRef] [PubMed] [Google Scholar]
  40. Singjam S, Ruksachat N. 2011. Case Report: Outbreak of leucocytozoonosis in captive wild birds. Khao Kor Wildlife Captive Breeding Center, Veterinary Research and Development Center. DLD Thailand, Report number 8, 1–7. [Google Scholar]
  41. Suprihati E, Yuniarti W. 2017. The phylogenetics of Leucocytozoon caulleryi infecting broiler chickens in endemic areas in Indonesia. Veterinary World, 10, 1324–1328. [CrossRef] [PubMed] [Google Scholar]
  42. Watthanadirek A, Chawengkirttikul R, Poolsawat N, Junsiri W, Boonmekam D, Reamtong O, Anuracpreeda P. 2019. Recombinant expression and characterization of major surface protein 4 from Anaplasma marginale. Acta Tropica, 197, 105047. [CrossRef] [PubMed] [Google Scholar]
  43. Watthanadirek A, Junsiri W, Minsakorn S, Poolsawat N, Srionrod N, Khumpim P, Chawengkirttikul R, Anuracpreeda P. 2021. Molecular and recombinant characterization of major surface protein 5 from Anaplasma marginale. Acta Tropica, 220, 105933. [CrossRef] [PubMed] [Google Scholar]
  44. Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, Murata S, Nonaka N, Nakao R, Katakura K. 2020. Detection and molecular identification of Leucocytozoon and Plasmodium species from village chickens in different areas of Myanmar. Acta Tropica, 212, 105719. [CrossRef] [PubMed] [Google Scholar]
  45. Xuan MNT, Kaewlamun W, Saiwichai T, Thanee S, Poofery J, Tiawsirisup S, Poofery J, Tiawsirisup S, Channumsin M, Kaewthamasorn M. 2021. Development and application of a novel multiplex PCR assay for the differentiation of four haemosporidian parasites in the chicken Gallus gallus domesticus. Veterinary Parasitology, 293, 109431. [CrossRef] [PubMed] [Google Scholar]
  46. Zhao W, Cai B, Qi Y, Liu S, Hong L, Lu M, Chen X, Qiu C, Peng W, Li J, Su XZ. 2014. Multi-strain infections and “relapse” of Leucocytozoon sabrazesi gametocytes in domestic chickens in southern China. PLoS One, 9, e94877. [CrossRef] [PubMed] [Google Scholar]
  47. Zhao W, Liu J, Xu R, Zhang C, Pang Q, Chen X, Liu S, Hong L, Yuan J, Li X, Chen Y, Li J, Su XZ. 2015. The gametocytes of Leucocytozoon sabrazesi Infect chicken thrombocytes, not other blood cells. PLoS One, 10, e0133478. [CrossRef] [PubMed] [Google Scholar]
  48. Zhao W, Pang Q, Xu R, Liu J, Liu S, Li J, Su XZ. 2016. Monitoring the prevalence of Leucocytozoon sabrazesi in southern China and testing tricyclic compounds against gametocytes. PLoS One, 11, e0161869. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.