Open Access
Issue
Parasite
Volume 29, 2022
Article Number 21
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2022021
Published online 14 April 2022
  1. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573. [CrossRef] [PubMed] [Google Scholar]
  2. Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel W. 2020. Sharpening the molecular scissors: Advances in gene-editing technology. iScience, 23(1), 100789. [CrossRef] [PubMed] [Google Scholar]
  3. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436–439. [CrossRef] [PubMed] [Google Scholar]
  4. Clough B, Frickel EM. 2017. The Toxoplasma parasitophorous vacuole: An evolving host-parasite frontier. Trends in Parasitology, 33(6), 473–488. [CrossRef] [PubMed] [Google Scholar]
  5. Dubey JP, Hotea I, Olariu TR, Jones JL, Darabus G. 2014. Epidemiological review of toxoplasmosis in humans and animals in Romania. Parasitology, 141(3), 311–325. [CrossRef] [PubMed] [Google Scholar]
  6. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356(6336), 438–442. [CrossRef] [PubMed] [Google Scholar]
  7. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360(6387), 439–444. [CrossRef] [PubMed] [Google Scholar]
  8. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 362(6416), 839–842. [CrossRef] [PubMed] [Google Scholar]
  9. Hegazy MK, Awad SI, Saleh NE, Hegazy MM. 2020. Loop mediated isothermal amplification (LAMP) of Toxoplasma DNA from dried blood spots. Experimental Parasitology, 211, 107869. [Google Scholar]
  10. Homan WL, Vercammen M, De Braekeleer J, Verschueren H. 2000. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. International Journal for Parasitology, 30(1), 69–75. [Google Scholar]
  11. Ji-Long S, Li Y. 2019. Prevalence and fundamental researches of prevention and treatment of toxoplasmosis in China: an overview. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi, 31(1), 71–76. [Google Scholar]
  12. Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, Ioannidi EI, Krajeski RN, Bruneau R, Huang MW, Yu XG, Li JZ, Walker BD, Hung DT, Greninger AL, Jerome KR, Gootenberg JS, Abudayyeh OO, Zhang F. 2020. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. New England Journal of Medicine, 383(15), 1492–1494. [CrossRef] [PubMed] [Google Scholar]
  13. Kanitchinda S, Srisala J, Suebsing R, Prachumwat A, Chaijarasphong T. 2020. CRISPR-Cas fluorescent cleavage assay coupled with recombinase polymerase amplification for sensitive and specific detection of Enterocytozoon hepatopenaei. Biotechnology Reports, 27, 107869. [Google Scholar]
  14. Kong QM, Lu SH, Tong QB, Lou D, Chen R, Zheng B, Kumagai T, Wen LY, Ohta N, Zhou XN. 2012. Loop-mediated isothermal amplification (LAMP): early detection of Toxoplasma gondii infection in mice. Parasites & Vectors, 5, 2. [Google Scholar]
  15. Li L, Li S, Wu N, Wu J, Wang G, Zhao G, Wang J. 2019. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synthetic Biology, 8(10), 2228–2237. [CrossRef] [PubMed] [Google Scholar]
  16. Li R, Ma Y, Li J, Zhou P, Zheng F, Liu Q, Gao W. 2020. Application of Toxoplasma gondii GRA15 peptides in diagnosis and serotyping. Microbial Pathogenesis, 143, 104168. [CrossRef] [PubMed] [Google Scholar]
  17. Li Y, Yu Z, Jiao S, Liu Y, Ni H, Wang Y. 2020. Development of a recombinase-aided amplification assay for rapid and sensitive detection of porcine circovirus 3. Journal of Virological Methods, 282, 113904. [CrossRef] [PubMed] [Google Scholar]
  18. Lima TS, Lodoen MB. 2019. Mechanisms of human innate immune evasion by Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 9, 103. [CrossRef] [PubMed] [Google Scholar]
  19. Ma QN, Wang M, Zheng LB, Lin ZQ, Ehsan M, Xiao XX, Zhu XQ. 2021. RAA-Cas12a-Tg: A nucleic acid detection system for Toxoplasma gondii based on CRISPR-Cas12a combined with recombinase-aided amplification (RAA). Microorganisms, 9(8), 1644. [CrossRef] [PubMed] [Google Scholar]
  20. Pappas G, Roussos N, Falagas ME. 2009. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. International Journal for Parasitology, 39(12), 1385–1394. [CrossRef] [PubMed] [Google Scholar]
  21. Robert-Gangneux F, Darde ML. 2012. Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews, 25(2), 264–296. [CrossRef] [PubMed] [Google Scholar]
  22. Rostami A, Karanis P, Fallahi S. 2018. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection, 46(3), 303–315. [Google Scholar]
  23. Roux G, Varlet-Marie E, Bastien P, Sterkers Y, French National Reference Center for Toxoplasmosis. 2018. Evolution of Toxoplasma-PCR methods and practices: a French national survey and proposal for technical guidelines. International Journal for Parasitology, 48(9–10), 701–707. [CrossRef] [PubMed] [Google Scholar]
  24. Soltani Tehrani B, Mirzajani E, Fallahi S, Manouchehri Naeini K, Mahmoudi MR, Safari Kavishahi M, Eskandari V, Zebardast N. 2020. Challenging TaqMan probe-based real-time PCR and loop-mediated isothermal amplification (LAMP): the two sensitive molecular techniques for the detection of toxoplasmosis, a potentially dangerous opportunistic infection in immunocompromised patients. Archives of Microbiology, 202(7), 1881–1888. [CrossRef] [PubMed] [Google Scholar]
  25. Sullivan TJ, Dhar AK, Cruz-Flores R, Bodnar AG. 2019. Rapid, CRISPR-Based, Field-deployable detection of white spot syndrome virus in shrimp. Scientific Reports, 9(1), 19702. [CrossRef] [PubMed] [Google Scholar]
  26. Thangarajah P, Hajissa K, Wong WK, Abdullah MA, Ismail N, Mohamed Z. 2019. Usefulness of paired samples for the serodiagnosis of toxoplasmosis infection in a tertiary teaching hospital in Malaysia. BMC Infectious Diseases, 19(1), 202. [CrossRef] [PubMed] [Google Scholar]
  27. Tong Q, Chen R, Kong Q, Goossens J, Radwanska M, Lou D, Ding J, Zheng B, Fu Y, Wang T, Stefan M, Lu S. 2018. DNA detection of Trypanosoma evansi: Diagnostic validity of a new assay based on loop-mediated isothermal amplification (LAMP). Veterinary Parasitology, 250, 1–6. [CrossRef] [PubMed] [Google Scholar]
  28. Wang W, Wang C, Bai Y, Zhang P, Yao S, Liu J, Zhang T. 2020. Establishment of reverse transcription recombinase-aided amplification-lateral-flow dipstick and real-time fluorescence-based reverse transcription recombinase-aided amplification methods for detection of the Newcastle disease virus in chickens. Poultry Science, 99(7), 3393–3401. [CrossRef] [PubMed] [Google Scholar]
  29. Wang W, Wang C, Zhang Z, Zhang P, Zhai X, Li X, Zhang T. 2021. Recombinase-aided amplification-lateral flow dipstick assay-a specific and sensitive method for visual detection of avian infectious laryngotracheitis virus. Poultry Science, 100(3), 100895. [CrossRef] [PubMed] [Google Scholar]
  30. Wang X, Shang X, Huang X. 2020. Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods. Emerging Microbes & Infections, 9(1), 1682–1691. [CrossRef] [PubMed] [Google Scholar]
  31. Xiong Y, Luo Y, Li H, Wu W, Ruan X, Mu X. 2020. Rapid visual detection of dengue virus by combining reverse transcription recombinase-aided amplification with lateral-flow dipstick assay. International Journal of Infectious Diseases, 95, 406–412. [CrossRef] [Google Scholar]
  32. Xue Y, Kong Q, Ding H, Xie C, Zheng B, Zhuo X, Ding J, Tong Q, Lou D, Lu S, Lv H. 2021. A novel loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) device for rapid detection of Toxoplasma gondii in the blood of stray cats and dogs. Parasite, 28, 41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Zhang K, Lin G, Han Y, Li J. 2016. Serological diagnosis of toxoplasmosis and standardization. Clinica Chimica Acta, 461, 83–89. [CrossRef] [Google Scholar]
  34. Zhang RQ, Li GX, Li XN, Shen XX, Gao Y, Wang L, Fan T, Duan QX, Wang YK, Wang J, Feng ZS, Ma XJ. 2019. A rapid and sensitive recombinase aided amplification assay incorporating competitive internal control to detect Bordetella pertussis using the DNA obtained by boiling. International Journal of Infectious Diseases, 86, 108–113. [CrossRef] [Google Scholar]
  35. Zhang X, Guo L, Ma R, Cong L, Wu Z, Wei Y, Xue S, Zheng W, Tang S. 2017. Rapid detection of Salmonella with recombinase aided amplification. Journal of Microbiological Methods, 139, 202–204. [CrossRef] [PubMed] [Google Scholar]
  36. Zhao N, Jia L, Che J, He X, Zhang B. 2021. Novel molecular marker for RAA-LFD visual detection of Cynoglossus semilaevis sex. Animal Reproduction Science, 226, 106713. [CrossRef] [PubMed] [Google Scholar]
  37. Zhao XY, Ewald SE. 2020. The molecular biology and immune control of chronic Toxoplasma gondii infection. Journal of Clinical Investigation, 130(7), 3370–3380. [CrossRef] [PubMed] [Google Scholar]
  38. Zheng YZ, Chen JT, Li J, Wu XJ, Wen JZ, Liu XZ, Lin LY, Liang XY, Huang HY, Zha GC, Yang PK, Li LJ, Zhong TY, Liu L, Cheng WJ, Song XN, Lin M. 2021. Reverse transcription recombinase-aided amplification assay with lateral flow dipstick assay for rapid detection of 2019 novel coronavirus. Frontiers in Cellular and Infection Microbiology, 11, 613304. [CrossRef] [PubMed] [Google Scholar]
  39. Zhu CS, Liu CY, Qiu XY, Xie SS, Li WY, Zhu L, Zhu LY. 2020. Novel nucleic acid detection strategies based on CRISPR-Cas systems: From construction to application. Biotechnology and Bioengineering, 117(7), 2279–2294. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.