Open Access
Issue
Parasite
Volume 28, 2021
Article Number 4
Number of page(s) 17
DOI https://doi.org/10.1051/parasite/2020073
Published online 12 January 2021
  1. Aksenova OV, Bolotov IN, Gofarov MY, Kondakov AV, Vinarski MV, Bespalaya YV, Kolosova YS, Palatov DM, Sokolova SE, Spitsyn VM, Tomilova AA, Travina OV, Vikhrev IV. 2018. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Scientific Reports, 8, 11199. [CrossRef] [PubMed] [Google Scholar]
  2. Aldhoun J, Kolarova L, Skirnisson K, Horak P. 2009a. Bird schistosome diversity in Iceland: molecular evidence. Journal of Helminthology, 83, 173–180. [CrossRef] [Google Scholar]
  3. Aldhoun J, Faltynkova A, Karvonen A, Horak P. 2009b. Schistosomes in the North: A unique finding from a prosobranch snail using molecular tools. Parasitology International, 58, 314–317. [CrossRef] [Google Scholar]
  4. Ashrafi K, Brant SV. 2020. An efficient method for collecting the full-length adults, fragments, and eggs of Trichobilharzia spp. from the liver of definitive hosts. Parasitology Research, 119, 1167–1172. [CrossRef] [PubMed] [Google Scholar]
  5. Ashrafi K, Mas-Coma S. 2014. Fasciola gigantica transmission in the zoonotic fascioliasis endemic lowlands of Guilan, Iran: experimental assessment. Veterinary Parasitology, 205, 96–106. [CrossRef] [PubMed] [Google Scholar]
  6. Ashrafi K, Nouroosta A, Sharifdini M, Mahmoudi MR, Rahmati B, Brant SV. 2018. Genetic diversity of an avian nasal schistosome causing cercarial dermatitis in the Black Sea-Mediterranean migratory route. Parasitology Research, 117, 3821–3833. [CrossRef] [PubMed] [Google Scholar]
  7. Ashrafi K, Valero MA, Peixoto RV, Artigas P, Panova M, Mas-Coma S. 2015. Distribution of Fasciola hepatica and F. gigantica in the endemic area of Guilan, Iran: Relationships between zonal overlap and phenotypic traits. Infections, Genetics and Evolution, 31, 95–109. [CrossRef] [Google Scholar]
  8. Aksenova O, Vinarski M, Bolotov I, Kondakov A, Besplalaya Y, Tomilova A, Palster I, Gofarov M. 2017. Two Radix spp. (Gastropoda: Lymnaeidae) endemic to thermal springs around Lake Baikal represent ecotypes of the widespread Radix auricularia. Journal of Zoological Systematics and Evolutionary Research, 55, 298–309. [CrossRef] [Google Scholar]
  9. Athari A, Gohardehi S, Rostami-Jalilian M. 2006. Determination of definitive and intermediate hosts of cercarial dermatitis producing agents in northern Iran. Archives of Iranian Medicine, 9, 11–15. [PubMed] [Google Scholar]
  10. Bayssade-Dufour C, Jouet D, Rudolfova J, Horak P, Ferté H. 2006. Seasonal morphological variations in bird schistosomes. Parasite, 13, 205–214. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Blair D, Islam KS. 1983. The life cycle and morphology of Trichobilharzia australis n. sp. from the nasal blood vessels of the black duck in Australia with a review of the genus Trichobilharzia. Systematic Parasitology, 5, 89–117. [CrossRef] [Google Scholar]
  12. Bowles J, McManus DP. 1993. Rapid discrimination of Echinococcus species and strains using a PCR-based RFLP method. Molecular and Biochemical Parasitology, 57, 231–239. [CrossRef] [PubMed] [Google Scholar]
  13. Bowles J, Blair D, McManus DP. 1995. A molecular phylogeny of the human schistosomes. Molecular Phylogenetics and Evolution, 4, 103–109. [CrossRef] [PubMed] [Google Scholar]
  14. Brant SV, Loker ES. 2009. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. Journal of Parasitology, 95, 941–963. [CrossRef] [Google Scholar]
  15. Brant SV, Bochte CA, Loker ES. 2011. New intermediate host records for the avian schistosomes Dendritobilharzia pulverulenta, Gigantobilharzia huonensis, and Trichobilharzia querquedulae from North America. Journal of Parasitology, 97, 946–949. [CrossRef] [Google Scholar]
  16. Caron Y, Cabaraux A, Marechal F, Losson B. 2017. Swimmer’s itch in Belgium: first recorded outbreaks, molecular identification of the parasite species and intermediate hosts. Vector-Borne and Zoonotic Diseases, 17, 3. [CrossRef] [Google Scholar]
  17. Cipriani P, Mattiucci S, Paoletti M, Scialanca F, Nascetti G. 2011. Molecular evidence of Trichobilharzia franki Müller and Kimmig, 1994 (Digenea: Schistosomatidae) in Radix auricularia from Central Italy. Parasitology Research, 109, 935–940. [CrossRef] [PubMed] [Google Scholar]
  18. Clausen JH, Madsen H, Van PT, Dalsgaard A, Murrell KD. 2015. Integrated parasite management: path to sustainable control of fishborne trematodes in aquaculture. Trends in Parasitology, 31, 8–15. [CrossRef] [PubMed] [Google Scholar]
  19. Christiansen AO, Olsen A, Buchmann K, Kania PW, Nejsum P, Vennervald BJ. 2016. Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitology Research, 115, 1027–1037. [CrossRef] [PubMed] [Google Scholar]
  20. De Liberato C, Berrilli F, Bossu T, Magliano A, Montalbano Di Filippo M, Di Cave D. 2019. Outbreak of swimmer’s itch in Central Italy: description, causative agent and preventive measures. Zoonoses and Public Health, 66, 377–381. [CrossRef] [PubMed] [Google Scholar]
  21. Devkota R, Brant SV, Loker ES. 2015. The Schistosoma indicum species group in Nepal: presence of a new lineage of schistosome and use of the Indoplanorbis exustus species comples of snail hosts. International Journal for Parasitology, 45, 857–870. [CrossRef] [PubMed] [Google Scholar]
  22. Devkota R, Brant SV, Loker ES. 2016. A genetically distinct Schistosoma from Radix luteola from Nepal related to Schistosoma turkestanicum: a phylogenetic study of schistosome and snail host. Acta Tropica, 164, 45–53. [CrossRef] [PubMed] [Google Scholar]
  23. Dvorák J, Vanácová S, Hampl V, Flegr J, Horák P. 2002. Comparison of European Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology, 124, 307–313. [CrossRef] [PubMed] [Google Scholar]
  24. Ebbs ET, Loker ES, Brant SV. 2018. Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evolutionary Biology, 18, 103. [CrossRef] [PubMed] [Google Scholar]
  25. Ebbs ET, Loker ES, Davis NE, Flores V, Veleizan A, Brant SV. 2016. Schistosomes with wings: how host phylogeny and ecology shape the global distribution of Trichobilharzia querquedulae (Schistosomatidae). International Journal for Parasitology, 46, 669–677. [CrossRef] [PubMed] [Google Scholar]
  26. Fakhar M, Ghobaditara M, Brant SV, Karamian M, Gohardehi S, Bastani R. 2016. Phylogenetic analysis of nasal avian schistosomes (Trichobilharzia) from aquatic birds in Mazandaran Province, northern Iran. Parasitology International, 65, 151–158. [CrossRef] [PubMed] [Google Scholar]
  27. Farahnak A, Essalat M. 2003. A study on cercarial dermatitis in Khuzestan province, southwestern Iran. BMC Public Health, 3, 35. [CrossRef] [Google Scholar]
  28. Ferté H, Depaquit J, Carre S, Villena I, Léger N. 2005. The presence of Trichobilharzia szidati in Lymnaea stagnalis and T. franki in Radix auricularia in northeastern France: molecular evidence. Parasitology Research, 95, 150–154. [CrossRef] [PubMed] [Google Scholar]
  29. Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C. 2017. Recent range expansion of an intermediate host for animal schistosome parasites in the Indo-Australian Archipelago: phylogeography of the freshwater gastropod Indoplanorbis exustus in South and Southeast Asia. Parasites & Vectors, 10, 126. [CrossRef] [PubMed] [Google Scholar]
  30. Ghobaditara M, Fakhar M, Sharif M. 2015. An overview on the present situation of cercarial dermatitis: a neglected zoonotic disease in Iran and the World. Journal of Mazandaran University of Medical Sciences, 24, 446–460. [Google Scholar]
  31. Gohardehi S, Fakhar M, Madjidaei M. 2012. Avian schistosomes and human cercarial dermatitis in a wildlife refuge in Mazandaran Province, northern Iran. Zoonoses and Public Health, 60, 442–447. [CrossRef] [PubMed] [Google Scholar]
  32. Gulyas K, Soldanova M, Orosova M, Oros M. 2020. Confirmation of the presence of zoonotic Trichobilharzia franki following a human cercarial dermatitis outbreak in recreational water in Slovakia. Parasitology Research, 119, 2531–2537. [CrossRef] [PubMed] [Google Scholar]
  33. Hoberg EP, Pilitt PA, Galbreath KE. 2009. Why museums matter: a tale of pinworms (Oxyuroidea: Heteroxynematidae) among pikas (Ochotona princeps and O. collaris) in the American west. Journal of Parasitology, 95, 490–501. [CrossRef] [Google Scholar]
  34. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics Application Notes, 17, 754–755. [CrossRef] [PubMed] [Google Scholar]
  35. Imani-Baran A, Yakhchali M, Malekzadeh-Viayeh R, Farahnak A. 2013. Seasonal and geographical distribution of cercarial infection in Lymnaea gedrosiana (Pulmunata: Lymnaeidae) in northwest Iran. Iranian Journal of Parasitology, 8, 423–429. [PubMed] [Google Scholar]
  36. Jouet D, Ferté H, Depaquit J, Rudolfova J, Latour P, Zanella D, Kaltenbach ML, Léger N. 2008. Trichobilharzia spp. in natural conditions in Annecy Lake, France. Parasitology Research, 103, 51–58. [CrossRef] [PubMed] [Google Scholar]
  37. Jouet D, Skirnisson K, Kolářová L, Ferté H. 2010a. Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infection, Genetics and Evolution, 10, 1218–1227. [CrossRef] [PubMed] [Google Scholar]
  38. Jouet D, Skirnisson K, Kolářová L, Ferté H. 2010b. Final hosts and variability of Trichobilharzia regenti under natural conditions. Parasitology Research, 107, 923–930. [CrossRef] [Google Scholar]
  39. Karamian M, Aldhoun JA, Maraghi S, Hatam G, Farhangmehr B, Sadjjadi SM. 2011. Parasitological and molecular study of the furcocercariae from Melanoides tuberculate as a probable agent of cercarial dermatitis. Parasitology Research, 108, 955–962. [CrossRef] [PubMed] [Google Scholar]
  40. Kipp RM, Benson AJ, Larson J, Fusaro A. 2017. Radix auricularia. USGS Nonindigenous Aquatic Species Database: Gainesville, FL. http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID = 1012. [Google Scholar]
  41. Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M. 2013. Cercarial dermatitis, a neglected allergic disease. Clinical Reviews in Allergy and Immunology, 45, 63–74. [CrossRef] [Google Scholar]
  42. Korsunenka AV, Chrisanfova GG, Ryskov AP, Movseessian SO, Vasilyev VA, Semyenova SK. 2010. Detection of European Trichobilharzia schistosomes (T. franki, T. szidati, and T. regenti) based on novel genome sequences. Journal of Parasitology, 96, 802–806. [CrossRef] [Google Scholar]
  43. Kourilová P, Hogg KG, Kolářová L, Mountford AP. 2004. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reaction. Journal of Immunology, 172, 3766–3774. [CrossRef] [Google Scholar]
  44. Küster HC. 1862. Die Gattungen Limnaeus, Amphipeplea, Chilina, Isidora und Physopsis, in Systematisches Conchylien-Cabinet, 2nd edn. Martini C, Editor. Nürnberg: Bauer & Raspe, I.17 b: issues 180-182: 1-48, plates 1-11 (1862); issue 184: 49-77, plate 12 (1863). [Google Scholar]
  45. Lawton SP, Lim RM, Dukes JP, Cook RT, Walker AJ, Kirk RS. 2014. Identification of a major causative agent of human cercarial dermatitis, Trichobilharzia franki (Müller and Kimmig, 1994), in southern England and its evolutionary relationships with other European populations. Parasites & Vectors, 7, 277. [CrossRef] [PubMed] [Google Scholar]
  46. Lawton SP, Lim RM, Dukes JP, Kett SM, Cook RT, Walker AJ, Kirk RS. 2015. Unravelling the riddle of Radix: DNA barcoding for species identification of freshwater snail intermediate host of zoonotic digeneans and estimating their inter-population evolutionary relationships. Infection, Genetics and Evolution, 35, 63–74. [CrossRef] [Google Scholar]
  47. Lima dos Santos CAM, Howgate P. 2011. Fishborne zoonotic parasites and aquaculture: A review. Aquaculture, 318, 253–261. [CrossRef] [Google Scholar]
  48. Lockyer AE, Olson PD, Ostergaard P, Rollinson D, Johnston DA, Attwood SW, Southgate VR, Horak P, Snyder SD, Le TH, Agatsuma T, McManus DP, Carmichael AC, Naem S, Littlewood DT. 2003. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology, 126, 203–224. [CrossRef] [PubMed] [Google Scholar]
  49. Lopatkin AA, Chrisanfova GG, Voronin MV, Zazornova OP, Beer SA, Semyenova SK. 2010. Polymorphism of the cox1 gene in cercariae isolates of bird schistosomes (Trematoda: Schistosomatidae) from ponds of Moscow and Moscow region. Russian Journal of Genetics, 46, 873–880. [CrossRef] [Google Scholar]
  50. Maddison WP. 1997. Gene trees in species trees. Systematic Biology, 46, 523–536. [CrossRef] [Google Scholar]
  51. Mahdavi SA, Farahnak A, Mobedi I, Rad MBM, Azadeh H. 2013. Survey of migratory birds (Anatidae: Anas platyrhynchos) for schistosome parasites from Mazandaran Province, northern Iran. Iranian Journal of Parasitology, 8, 333–336. [PubMed] [Google Scholar]
  52. Mahdavi SA, Farahnak A, Mousavi SJ, Mobedi I, Rezaeian M, Golmohamadi T, Azadeh H, Gohardehi S. 2013. Prevalence of schistosome induced cercarial dermatitis in north of Iran. Asian Pacific Journal of Tropical Disease, 3, 37–40. [CrossRef] [Google Scholar]
  53. Maleki SH, Athari A, Haghighi A, Taghipour N, Gohardehi SH, Tabaei SS. 2012. Species identification of birds nasal Trichobilharzia in Sari, north of Iran. Iranian Journal of Parasitology, 7, 82–85. [Google Scholar]
  54. Müller V, Kimmig P. 1994. Trichobilharzia franki n. sp.–the cause of swimmer’s dermatitis in southwest German dredged lakes. Applied Parasitology, 35, 12–31. [PubMed] [Google Scholar]
  55. Nakhleh L. 2013. Computational approaches to species phylogeny inference and gene tree reconciliation. Trends in Ecology and Evolution, 28, 719–728. [CrossRef] [Google Scholar]
  56. Picard D, Jousson O. 2001. Genetic variability among cercariae of the Schistosomatidae (Trematoda: Digenea) causing swimmer’s itch in Europe. Parasite, 8, 237–242. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Pinto HA, Brant SV, de Melo AL. 2014. Physa marmorata (Mollusca: Physidae) as a natural intermediate host of Trichobilharzia (Trematoda: Schistosomatidae), a potential causative agent of avian mercurial dermatitis in Brazil. Acta Tropica, 138, 38–43. [CrossRef] [PubMed] [Google Scholar]
  58. Platt RN III, McDew-White M, Le Clech W, Chevalier FD, Allan F, Emery AM, Garba A, Hamidou AA, Ame SM, Webster JP, Rollinson D, Webster BL, Anderson TJC. 2019. Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Molecular Biology and Evolution, 36, 2127–2142. [CrossRef] [PubMed] [Google Scholar]
  59. Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M. 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371. [CrossRef] [PubMed] [Google Scholar]
  60. Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818. [CrossRef] [PubMed] [Google Scholar]
  61. Reier S, Haring E, Billinger F, Blatterer H, Duda M, Corofsky C, Grasser HP, Heinisch W, Horweg C, Druckenhauser L, Szucish NU, Wanka A, Sattmann H. 2020. First confirmed record of Trichobilharzia franki Müller & Kimmig, 1994, from Radix auricularia (Linnaeus, 1758) for Austria. Parasitology Research, 119, 4135–4141. [CrossRef] [PubMed] [Google Scholar]
  62. Rizevsky SV, Cherviakovsky EM, Kurchenko VP. 2010. Molecular taxonomic identification of Schistosomatidae from Naroch Lake and Polonevichi Lake in Belarus. Biochemical Systematics and Ecology, 39, 14–21. [CrossRef] [Google Scholar]
  63. Rudolfova J, Hampl V, Bayssade-Dufour C, Lockyer AE, Littlewood DT, Horák P. 2005. Validity reassessment of Trichobilharzia species using Lymnaea stagnalis as the intermediate host. Parasitology Research, 95, 79–89. [CrossRef] [PubMed] [Google Scholar]
  64. Schluter D. 2001. The ecology and origin of species. Trends in Ecology and Evolution, 16, 372–380. [CrossRef] [PubMed] [Google Scholar]
  65. Skírnisson K, Kolářová L, Horák P, Ferté H, Jouet D. 2012. Morphological features of the nasal blood fluke Trichobilharzia regenti (Schistosomatidae, Digenea) from naturally infected hosts. Parasitology Research, 110, 1881–1892. [CrossRef] [PubMed] [Google Scholar]
  66. Skrjabin KI, Zakharov NP. 1920. Zweineue Trematodengattugen aus den Blutgefassen der Volgel. Izvestnik Donskovo Veterinarnovo Instituta, 2, 1–6. [Google Scholar]
  67. Soldanova M, Georgieva S, Rohacova J, Knudsen R, Kuhn JA, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen PA, Scholz T, Lafferty KD, Kostadinova A. 2017. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. International Journal for Parasitology, 47, 327–345. [CrossRef] [PubMed] [Google Scholar]
  68. Valkiunas G, Atkinson CT, Bensch S, Sehgal RNM, Ricklefs RE. 2008. Parasite misidentifications in GenBank: how to minimize their number? Trends in Parasitology, 24, 247–248. [CrossRef] [PubMed] [Google Scholar]
  69. Vinarski MV, Aksenova OV, Bolotov IN. 2020. Taxonomic assessment of genetically-delineated species of radicine snails (Mollusca, Gastropoda, Lymnaeidae). Zoosystematics and Evolution, 96, 577–608. [CrossRef] [Google Scholar]
  70. Von Oheimb PV, Albrecht C, Riedel F, Du L, Yang J, Aldridge DC, Bößneck U, Zhang H, Wilke T. 2011. Freshwater biogeography and limnological evolution of the Tibetan Plateau – Insights from a plateau-wide distributed gastropod taxon (Radix spp.). PLoS One, 6(10), e26307. [CrossRef] [Google Scholar]
  71. Yakhchali M, Hosseinpanahi A, Malekzadeh-Viayeh R. 2016. Molecular evidence of Trichobilharzia species (Digenea: Schistosomatidae) in the snails of Lymnaea auricularia from Urmia suburb, northwest Iran. Iranian Journal of Parasitology, 11, 296–302. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.