Open Access
Issue
Parasite
Volume 27, 2020
Article Number 70
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2020068
Published online 11 December 2020
  1. Aikawa M, Miller LH, Johnson J, Rabbege J. 1978. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. Journal of Cell Biology, 77, 72–82. [CrossRef] [PubMed] [Google Scholar]
  2. Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. 2005. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathogens, 1(2), e17. [CrossRef] [PubMed] [Google Scholar]
  3. Alexander DL, Arastu-Kapur S, Dubremetz JF, Boothroyd JC. 2006. Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. Eukaryotic Cell, 5, 1169–1173. [CrossRef] [PubMed] [Google Scholar]
  4. An Z, Hu T, Lv Y, Li P, Liu L. 2020. Targeted amino acid and related amines analysis based on iTRAQ®-LC-MS/MS for discovering potential hepatotoxicity biomarkers. Journal of Pharmaceutical and Biomedical Analysis, 178, 112812. [CrossRef] [PubMed] [Google Scholar]
  5. Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. 2014. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathogens, 10(9), e1004273. [CrossRef] [PubMed] [Google Scholar]
  6. Bargieri DY, Andenmatten N, Lagal V, Thiberge S, Whitelaw JA, Tardieux I, Meissner M, Ménard R. 2013. Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nature Communications, 4, 2552. [CrossRef] [PubMed] [Google Scholar]
  7. Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. 2009. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathogens, 5, e1000309. [CrossRef] [PubMed] [Google Scholar]
  8. Besteiro S, Dubremetz JF, Lebrun M. 2011. The moving junction of apicomplexan parasites: a key structure for invasion. Cellular Microbiology, 13(6), 797–805. [CrossRef] [PubMed] [Google Scholar]
  9. Carruthers VB, Giddings OK, Sibley LD. 1999. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cellular Microbiology, 1, 225–235. [CrossRef] [PubMed] [Google Scholar]
  10. Chapman HD, Shirley MW. 2003. The Houghton strain of Eimeria tenella: a review of the type strain selected for genome sequencing. Avian Pathology, 32, 115–127. [CrossRef] [Google Scholar]
  11. Chesne-Seck ML, Pizarro JC, Vulliez-Le Normand B, Collins CR, Blackman MJ, Faber BW, Remarque EJ, Kocken CH, Thomas AW, Bentley GA. 2005. Structural comparison of apical membrane antigen 1 orthologues and paralogues in apicomplexan parasites. Molecular Biochemical Parasitology, 144, 55–67. [CrossRef] [Google Scholar]
  12. Cunha C, Coelho AV. 2012. Comparative proteome analysis of a human liver cell line stably transfected with hepatitis D virus full-length cDNA. Methods in Molecular Biology, 909, 205–225. [Google Scholar]
  13. Deans JA, Alderson T, Thomas AW, Mitchell GH, Lennox ES, Cohen S. 1982. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clinical and Experiment Immunology, 49(2), 297–309. [Google Scholar]
  14. Doherty GJ, McMahon HT. 2008. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annual Review of Biophysics, 37, 65–95. [CrossRef] [PubMed] [Google Scholar]
  15. Dong WT, Xiao LF, Hu JJ, Zhao XX, Liu JX, Zhang Y. 2017. iTRAQ proteomic analysis of the interactions between Bombyx mori nuclear polyhedrosis virus and silkworm. Journal of Proteomics, 166, 138–145. [CrossRef] [PubMed] [Google Scholar]
  16. Han H, Xue P, Dong H, Zhu S, Zhao Q, Huang B. 2016. Screening and characterization of apical membrane antigen 1 interacting proteins in Eimeria tenella. Experimental Parasitology, 170, 116–124. [CrossRef] [PubMed] [Google Scholar]
  17. Jahn D, Matros A, Bakulina AY, Tiedemann J, Schubert U, Giersberg M, Haehnel S, Zoufal K, Mock HP, Kipriyanov SM. 2009. Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody. Parasitology Research, 105, 655–668. [CrossRef] [PubMed] [Google Scholar]
  18. Jiang LL, Lin JJ, Han HY, Dong H, Zhao QP, Zhu SH, Huang B. 2012. Identification and characterization of Eimeria tenella apical membrane antigen-1 (AMA1). PLoS One, 7, e41115. [CrossRef] [PubMed] [Google Scholar]
  19. Labbé M, de Venevelles P, Girard-Misguich F, Bourdieu C, Guillaume A, Péry P. 2005. Eimeria tenella microneme protein EtMIC3: identification, localization and role in host cell infection. Molecular & Biochemical Parasitology, 140, 43–53. [CrossRef] [PubMed] [Google Scholar]
  20. Lal K, Bromley E, Oakes R, Prieto JH, Sanderson SJ, Kurian D, Hunt L, Yates JR 3rd, Wastling JM, Sinden RE, Tomley FM. 2009. Proteomic comparison of four Eimeria tenella life-cycle stages: unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics, 9, 4566–4576. [CrossRef] [PubMed] [Google Scholar]
  21. Lillehoj HS, Trout JM. 1993. Coccidia: a review of recent advances on immunity and vaccine development. Avian Patholology, 22(1), 3–31. [CrossRef] [Google Scholar]
  22. Long PL, Millard BJ, Joyner LP, Norton CC. 1976. A guide to laboratory techniques used in the study and diagnosis of avian coccidiosis. Folia Veterinaria Latina, 6, 201–217. [PubMed] [Google Scholar]
  23. Ma D, Huang Y, Ma C, Zhang L, Wang J, Wang D, Li J, Dalloul RA. 2019. Eimeria tenella: specific EtAMA1-binding peptides inhibit sporozoite entry into host cells. Poultry Science, 98(10), 4480–4491. [CrossRef] [PubMed] [Google Scholar]
  24. Mital J, Meissner M, Soldati D, Ward GE. 2005. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Molecular Biology of the Cell, 16, 4341–4349. [CrossRef] [PubMed] [Google Scholar]
  25. Mitchell GH, Thomas AW, Margos G, Dluzewski AR, Bannister LH. 2004. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infection and Immunity, 72, 154–158. [CrossRef] [PubMed] [Google Scholar]
  26. Muh F, Lee SK, Hoque MR, Han JH, Park JH, Firdaus ER, Moon RW, Lau YL, Han ET. 2018. In vitro invasion inhibition assay using antibodies against Plasmodium knowlesi Duffy binding protein alpha and apical membrane antigen protein 1 in human erythrocyte-adapted P. knowlesi A1-H.1 strain. Malaria Journal, 17, 272. [CrossRef] [PubMed] [Google Scholar]
  27. Ng ST, Sanusi Jangi M, Shirley MW, Tomley FM, Wan KL. 2002. Comparative EST analyses provide insights into gene expression in two asexual developmental stages of Eimeria tenella. Experimental Parasitology, 101(2–3), 168–173. [CrossRef] [PubMed] [Google Scholar]
  28. Parker ML, Boulanger MJ. 2015. An extended surface loop on Toxoplasma gondii Apical Membrane Antigen 1 (AMA1) governs ligand binding selectivity. PLoS One, 10(5), e0126206. [CrossRef] [Google Scholar]
  29. Pastor-Fernández I, Kim S, Billington K, Bumstead J, Marugán-Hernández V, Küster T, Ferguson DJP, Vervelde L, Blake DP, Tomley FM. 2018. Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens. International Journal for Parasitology, 48, 505–518. [CrossRef] [PubMed] [Google Scholar]
  30. Pizarro JC, Vulliez-Le Normand B, Chesne-Seck ML, Collins CR, Withers-Martinez C, Hackett F, Blackman MJ, Faber BW, Remarque EJ, Kocken CH, Thomas AW, Bentley GA. 2005. Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science, 308, 408–411. [CrossRef] [Google Scholar]
  31. Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, Dunn M, Hung SS, Kawahara F, Miranda-Saavedra D, Malas TB, Mourier T, Naghra H, Nair M, Otto TD, Rawlings ND, Rivailler P, Sanchez-Flores A, Sanders M, Subramaniam C, Tay YL, Woo Y, Wu X, Barrell B, Dear PH, Doerig C, Gruber A, Ivens AC, Parkinson J, Rajandream MA, Shirley MW, Wan KL, Berriman M, Tomley FM, Pain A. 2014. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Research, 24(10), 1676–1685. [CrossRef] [PubMed] [Google Scholar]
  32. Ren Y, Hao P, Dutta B, Cheow ES, Sim KH, Gan CS, Lim SK, Sze SK. 2013. Hypoxia modulates A431 cellular pathways association to tumor radioresistance and enhanced migration revealed by comprehensive proteomic and functional studies. Molecular & Cellular Proteomics, 12, 485–498. [CrossRef] [Google Scholar]
  33. Salama AA, Terkawi MA, Kawai S, Aboulaila M, Nayel M, Mousa A, Zaghawa A, Yokoyama N, Igarashi I. 2013. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Experimental Parasitology, 135(3), 623–628. [CrossRef] [PubMed] [Google Scholar]
  34. Shirley MW. 1995. Eimeria species and strains of chickens, in Biotechnology Guidelines on Techniques in Coccidiosis Research. The European Commission DGXII, Luxembourg City, Luxembourg. p. 24. [Google Scholar]
  35. Tomley FM, Bumstead JM, Billington KJ, Dunn PP. 1996. Molecular cloning and characterization of a novel acidic microneme protein (Etmic-2) from the apicomplexan protozoan parasite, Eimeria tenella. Molecular Biochemical Parasitology, 79(2), 195–206. [CrossRef] [PubMed] [Google Scholar]
  36. Tong A, Gou L, Lau QC, Chen B, Zhao X, Li J, Tang H, Chen L, Tang M, Huang C, Wei Y. 2009. Proteomic profiling identifies aberrant epigenetic modifications induced by hepatitis B virus X protein. Journal of Proteome Research, 8(2), 1037–1046. [CrossRef] [PubMed] [Google Scholar]
  37. Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, Lebrun M, Boulanger MJ. 2011. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science, 333(6041), 463–467. [CrossRef] [PubMed] [Google Scholar]
  38. Tyler JS, Treeck M, Boothroyd JC. 2011. Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends in Parasitology, 27(9), 410–420. [CrossRef] [PubMed] [Google Scholar]
  39. Walker RA, Sharman PA, Miller CM, Lippuner C, Okoniewski M, Eichenberger RM, Ramakrishnan C, Brossier F, Deplazes P, Hehl AB, Smith NC. 2015. RNA Seq analysis of the Eimeria tenella gametocyte transcriptome reveals clues about the molecular basis for sexual reproduction and oocyst biogenesis. BMC Genomics, 16, 94. [CrossRef] [PubMed] [Google Scholar]
  40. Wang B, Hajano JU, Ren Y, Lu C, Wang X. 2015. iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation. Virology Journal, 12, 99. [CrossRef] [PubMed] [Google Scholar]
  41. Wang X, Gong PT, Li JH, Yang X, Zhang XC. 2018. Identification of interaction between Eimeria tenella apical membrane antigen-1 and microneme protein-2. Journal of Pathogen Biology, 13(3), 267–273 (in Chinese). [Google Scholar]
  42. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359–362. [CrossRef] [PubMed] [Google Scholar]
  43. Yan M, Cui X, Zhao Q, Zhu S, Huang B, Wang L, Zhao H, Liu G, Li Z, Han H, Dong H. 2018. Molecular characterization and protective efficacy of the microneme 2 protein from Eimeria tenella. Parasite, 25, 60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Yan M, Huang B, Zhao QP, Han HY, Zhu SH, Zhao ZP, Chen T, Lv L, Dong H. 2019. Demonstration of interaction between domain of apical membrane antigen 1 and rhoptry neck protein 2 of Eimeria tenella by BiFC technology. Chinese Journal of Animal Infectious Disease, 27(4), 32–38 (in Chinese). [Google Scholar]
  45. Zhang H, Compaore MK, Lee EG, Liao M, Zhang G, Sugimoto C, Fujisaki K, Nishikawa Y, Xuan X. 2007. Apical membrane antigen 1 is a cross-reactive antigen between Neospora caninum and Toxoplasma gondii, and the anti-NcAMA1 antibody inhibits host cell invasion by both parasites. Molecular & Biochemical Parasitology, 151(2), 205–212. [CrossRef] [Google Scholar]
  46. Zhao Z, Zhao Q, Zhu S, Huang B, Lv L, Chen T, Yan M, Han H, Dong H. 2019. iTRAQ-based comparative proteomic analysis of cells infected with Eimeria tenella sporozoites. Parasite, 26, 7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  47. Zhu M, Dai S, McClung S, Yan X, Chen S. 2009. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Molecular & Cellular Proteomics, 8(4), 752–766. [CrossRef] [Google Scholar]
  48. Zhu C, Zhao Y, Huang X, Pang Y, Zhao Y, He X. 2013. Quantitative proteomic analysis of streptomycin-resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Wei Sheng Wu Xue Bao, 53(2), 154–163 (in Chinese). [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.