Open Access
Research Article
Issue
Parasite
Volume 27, 2020
Article Number 54
Number of page(s) 8
DOI https://doi.org/10.1051/parasite/2020052
Published online 02 November 2020
  1. Baker AS, Craven JC. 2003. Checklist of the mites (Arachnida: Acari) associated with bats (Mammalia: Chiroptera) in the British Isles. Systematic and Applied Acarology Special Publications, 14, 1–20. [Google Scholar]
  2. Baud D, Greub G. 2011. Intracellular bacteria and adverse pregnancy outcomes. Clinical Microbiology and Infection, 17, 1312–1322. [CrossRef] [Google Scholar]
  3. Baud D, Regan L, Greub G. 2008. Emerging role of Chlamydia and Chlamydia-like organisms in adverse pregnancy outcomes. Current Opinion in Infectious Diseases, 21, 70–76. [CrossRef] [PubMed] [Google Scholar]
  4. Baud D, Goy G, Osterheld M-C, Borel N, Vial Y, Pospischil A, Greub G. 2011. Waddlia chondrophila: from bovine abortion to human miscarriage. Clinical Infectious Diseases, 52, 1469–1471. [CrossRef] [Google Scholar]
  5. Bayramova F, Jacquier N, Greub G. 2018. Insight in the biology of Chlamydia-related bacteria. Microbes and Infection, 20, 432–440. [CrossRef] [PubMed] [Google Scholar]
  6. Brook CE, Bai Y, Dobson AP, Osikowicz LM, Ranaivoson HC, Zhu Q, Kosoy MY, Dittmar K. 2015. Bartonella spp. in fruit bats and blood-feeding ectoparasites in Madagascar. PLoS Neglected Tropical Diseases, 9, e0003532. [CrossRef] [PubMed] [Google Scholar]
  7. Bruyndonckx N, Dubey S, Ruedi M, Christe P. 2009. Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae). Molecular Phylogenetics and Evolution, 51, 227–237. [CrossRef] [PubMed] [Google Scholar]
  8. Bruyndonckx N, Biollaz F, Dubey S, Goudet J, Christe P. 2010. Mites as biological tags of their hosts. Molecular Ecology, 19, 2770–2778. [CrossRef] [PubMed] [Google Scholar]
  9. Burnard D, Weaver H, Gillett A, Loader J, Flanagan C, Polkinghorne A. 2017. Novel Chlamydiales genotypes identified in ticks from Australian wildlife. Parasites & Vectors, 10, 46. [CrossRef] [PubMed] [Google Scholar]
  10. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. 2006. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19, 531–545. [CrossRef] [PubMed] [Google Scholar]
  11. Christe P, Arlettaz R, Vogel P. 2000. Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters, 3, 207–212. [Google Scholar]
  12. Christe P, Giorgi MS, Vogel P, Arlettaz R. 2003. Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization? Journal of Animal Ecology, 72, 866–872. [CrossRef] [Google Scholar]
  13. Chua PKB, Corkill JE, Hooi PS, Cheng SC, Winstanley C, Hart CA. 2005. Isolation of Waddlia malaysiensis, a novel intracellular bacterium, from fruit bat (Eonycteris spelaea). Emerging Infectious Diseases, 11, 271–277. [CrossRef] [PubMed] [Google Scholar]
  14. Circella E, Pugliese N, Todisco G, Cafiero MA, Sparagano OAE, Camarda A. 2011. Chlamydia psittaci infection in canaries heavily infested by Dermanyssus gallinae. Experimental and Applied Acarology, 55, 329. [CrossRef] [Google Scholar]
  15. Corsaro D, Greub G. 2006. Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria. Clinical Microbiology Reviews, 19, 283–297. [CrossRef] [PubMed] [Google Scholar]
  16. Corsaro D, Valassina M, Venditti D. 2003. Increasing diversity within chlamydiae. Critical Reviews in Microbiology, 29, 37–78. [CrossRef] [PubMed] [Google Scholar]
  17. Croxatto A, Rieille N, Kernif T, Bitam I, Aeby S, Péter O, Greub G. 2014. Presence of Chlamydiales DNA in ticks and fleas suggests that ticks are carriers of Chlamydiae. Ticks and Tick-Borne Diseases, 5, 359–365. [CrossRef] [PubMed] [Google Scholar]
  18. Deunff J. 1977. Observations on Spinturnicidae of occidental paleartic region (Acarina, Mesostigmata) – specificity, distribution and repartition. Acarologia, 18, 602–617. [Google Scholar]
  19. Deunff J, Walter G, Bellido A, Volleth M. 2009. Description of a cryptic species, Spinturnix bechsteini n. sp. (Acari, Mesostigmata, Spinturnicidae), parasite of Myotis bechsteinii (Kuhl, 1817) (Chiroptera, Vespertilionidae) by using ecoethology of host bats and statistical methods. Journal of Medical Entomology, 41, 826–832. [Google Scholar]
  20. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. [CrossRef] [PubMed] [Google Scholar]
  21. Everett KDE, Bush RM, Andersen AA. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. International Journal of Systematic and Evolutionary Microbiology, 49, 415–440. [Google Scholar]
  22. Fox J, Weisberg S. 2010. An R companion to applied regression. Newbury Park, California, USA: SAGE. [Google Scholar]
  23. Giorgi MS, Arlettaz R, Guillaume F, Nusslé S, Ossola C, Vogel P, Christe P. 2004. Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia, 138, 648–654. [CrossRef] [PubMed] [Google Scholar]
  24. Greub G. 2009. Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clinical Microbiology and Infection, 15, 18–28. [CrossRef] [Google Scholar]
  25. Greub G, Raoult D. 2004. Microorganisms resistant to free-living Amoebae. Clinical Microbiology Reviews, 17, 413–433. [CrossRef] [PubMed] [Google Scholar]
  26. Han H-J, Wen H, Zhou C-M, Chen F-F, Luo L-M, Liu J, Yu X-J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Research, 205, 1–6. [CrossRef] [PubMed] [Google Scholar]
  27. Heiskanen-Kosma T, Paldanius M, Korppi M. 2008. Simkania negevensis may be a true cause of community acquired pneumonia in children. Scandinavian Journal of Infectious Diseases, 40, 127–130. [CrossRef] [PubMed] [Google Scholar]
  28. Hokynar K, Sormunen JJ, Vesterinen EJ, Partio EK, Lilley T, Timonen V, Panelius J, Ranki A, Puolakkainen M. 2016. Chlamydia-like organisms (CLOs) in Finnish Ixodes ricinus ticks and human skin. Microorganisms, 4, Article no.: 28. [Google Scholar]
  29. Hokynar K, Vesterinen EJ, Lilley TM, Pulliainen AT, Korhonen SJ, Paavonen J, Puolakkainen M. 2017. Molecular evidence of Chlamydia-Like organisms in the feces of Myotis daubentonii bats. Applied and Environmental Microbiology, 83, e02951-16. [CrossRef] [PubMed] [Google Scholar]
  30. Horn M. 2008. Chlamydiae as symbionts in eukaryotes. Annual Review of Microbiology, 62, 113–131. [CrossRef] [PubMed] [Google Scholar]
  31. Hornok S, Kovács R, Meli ML, Gönczi E, Hofmann-Lehmann R, Kontschán J, Gyuranecz M, Dán Á, Molnár V. 2012. First detection of bartonellae in a broad range of bat ectoparasites. Veterinary Microbiology, 159, 541–543. [CrossRef] [PubMed] [Google Scholar]
  32. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. [CrossRef] [PubMed] [Google Scholar]
  33. Juste J, Paunović M. 2016. Myotis punicus. The IUCN Red List of Threatened Species, 2016, E.T44864A22073410. [Google Scholar]
  34. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. [CrossRef] [PubMed] [Google Scholar]
  35. Kuo CC, Jackson LA, Campbell LA, Grayston JT. 1995. Chlamydia pneumoniae (TWAR). Clinical Microbiology Reviews, 8, 451–461. [CrossRef] [PubMed] [Google Scholar]
  36. Lamoth F, Jaton K, Vaudaux B, Greub G. 2011. Parachlamydia and Rhabdochlamydia: emerging agents of community-acquired respiratory infections in children. Clinical Infectious Diseases, 53, 500–501. [CrossRef] [Google Scholar]
  37. Lienard J, Croxatto A, Aeby S, Jaton K, Posfay-Barbe K, Gervaix A, Greub G. 2011. Development of a new Chlamydiales-specific real-time PCR and its application to respiratory clinical samples. Journal of Clinical Microbiology, 49, 2637–2642. [CrossRef] [PubMed] [Google Scholar]
  38. Mühldorfer K. 2013. Bats and bacterial pathogens: a review. Zoonoses and Public Health, 60, 93–103. [CrossRef] [PubMed] [Google Scholar]
  39. Niemi S, Greub G, Puolakkainen M. 2011. Chlamydia-related bacteria in respiratory samples in Finland. Microbes and Infection, 13, 824–827. [CrossRef] [PubMed] [Google Scholar]
  40. Omsland A, Sixt BS, Horn M, Hackstadt T. 2014. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiology Reviews, 38, 779–801. [CrossRef] [PubMed] [Google Scholar]
  41. Pierlé SA, Morales CO, Martínez LP, Ceballos NA, Rivero JJP, Díaz OL, Brayton KA, Setién AA. 2015. Novel Waddlia intracellular bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerging Infectious Diseases, 21, 2161–2163. [CrossRef] [PubMed] [Google Scholar]
  42. Pillonel T, Bertelli C, Salamin N, Greub G. 2015. Taxogenomics of the order Chlamydiales. International Journal of Systematic and Evolutionary Microbiology, 65, 1381–1393. [CrossRef] [PubMed] [Google Scholar]
  43. Pilloux L, Aeby S, Gaümann R, Burri C, Beuret C, Greub G. 2015. The high prevalence and diversity of Chlamydiales DNA within Ixodes ricinus ticks suggest a role for ticks as reservoirs and vectors of Chlamydia-related bacteria. Applied and Environmental Microbiology, 81, 8177–8182. [CrossRef] [PubMed] [Google Scholar]
  44. R Core Team. 2013. R: A language and environment for statistical computing. [Google Scholar]
  45. Reeves WK, Dowling APG, Dasch GA. 2006. Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Experimental & Applied Acarology, 38, 181–188. [CrossRef] [PubMed] [Google Scholar]
  46. RStudio Team. 2016. RStudio: Integrated development environment for R. [Google Scholar]
  47. Rudnick A. 1960. A revision of mites of the Family Spinturnicidae (Acarina). University of California Publications in Entomology, 17, 157–284. [Google Scholar]
  48. Sambrook JE, Fritsch F, Manitatis T. 1989. Molecular cloning: a laboratory manual. New York: Second Edi Cold Spring Harbor Laboratory Press. [Google Scholar]
  49. Stanyukovich MK. 1997. Keys to the gamasid mites (Acari, Parasitiformes, Mesostigmata, Macronyssoidea et Laelaptoidea) parasitizing bats (Mammalia, Chiroptera) from Russia and adjacent countries. Rudolstädter Naturhistorische Schriften, 7, 13–46. [Google Scholar]
  50. Stride MC, Polkinghorne A, Miller TL, Groff JM, LaPatra SE, Nowak BF. 2013. Molecular characterization of “Candidatus Parilichlamydia carangidicola”, a novel Chlamydia-Like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new Family, “Candidatus Parilichlamydiaceae” fam. nov. (Order Chlamydiales). Applied and Environmental Microbiology, 79, 1590–1597. [CrossRef] [PubMed] [Google Scholar]
  51. Stuckey MJ, Chomel BB, de Fleurieu EC, Aguilar-Setién A, Boulouis H-J, Chang C. 2017. Bartonella, bats and bugs: a review. Comparative Immunology, Microbiology and Infectious Diseases, 55, 20–29. [CrossRef] [PubMed] [Google Scholar]
  52. Szentiványi T, Christe P, Glaizot O. 2019. Bat flies and their microparasites: current knowledge and distribution. Frontiers in Veterinary Science, 6, Article no.: 115. [Google Scholar]
  53. Szubert-Kruszyńska A, Stańczak J, Cieniuch S, Podsiadły E, Postawa T, Michalik J. 2019. Bartonella and Rickettsia infections in haematophagous Spinturnix myoti mites (Acari: Mesostigmata) and their bat host, Myotis myotis (Yangochiroptera: Vespertilionidae), from Poland. Microbial Ecology, 77, 759–768. [CrossRef] [PubMed] [Google Scholar]
  54. Taylor HR, Burton MJ, Haddad D, West S, Wright H. 2014. Trachoma. Lancet, 384, 2142–2152. [CrossRef] [PubMed] [Google Scholar]
  55. Taylor-Brown A, Polkinghorne A. 2017. New and emerging chlamydial infections of creatures great and small. New Microbes and New Infections, 18, 28–33. [CrossRef] [PubMed] [Google Scholar]
  56. Taylor-Brown A, Vaughan L, Greub G, Timms P, Polkinghorne A. 2015. Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. Pathogens and Disease, 73, 1–15. [Google Scholar]
  57. Uchikawa K, Zhang M-Y, O’Connor BM, Klompen BMH. 1994. Contribution to the taxonomy of the genus Spinturnix (Acari: Spinturnicidae), with the erection of a new genus, Emballonuria. Folia Parasitologica, 41, 287–304. [Google Scholar]
  58. Vajana E, Widmer I, Rochat E, Duruz S, Selmoni O, Vuilleumier S, Aeby S, Greub G, Joost S. 2018. Indication of spatially random occurrence of Chlamydia-like organisms in Bufo bufo tadpoles from ponds located in the Geneva metropolitan area. New Microbes and New Infections, 27, 54–63. [CrossRef] [PubMed] [Google Scholar]
  59. Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT. 2014. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerging infectious diseases, 20(6), 960. [CrossRef] [PubMed] [Google Scholar]
  60. Verweij SP, Kebbi-Beghdadi C, Land JA, Ouburg S, Morré SA, Greub G. 2015. Waddlia chondrophila and Chlamydia trachomatis antibodies in screening infertile women for tubal pathology. Microbes and Infection, 17, 745–748. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.