Open Access
Research Article
Volume 27, 2020
Article Number 29
Number of page(s) 12
Published online 30 April 2020
  1. Aghdam MA, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. 2019. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of Controlled Release, 315, 1–22. [CrossRef] [Google Scholar]
  2. Araújo IAC, Paula RC, Alves CL, Faria KF, Oliveira MM, Mendes GG, Dias EMFA, Ribeiro RR, Oliveira AB, Silva SMD. 2019. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Experimental Parasitology, 199, 67–73. [CrossRef] [PubMed] [Google Scholar]
  3. Barichello JM, Morishita M, Takayama K, Nagai T. 1999. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. International Journal of Pharmaceutics, 184, 189–198. [CrossRef] [PubMed] [Google Scholar]
  4. Barros D, Costa Lima SA, Cordeiro-da-Silva A. 2015. Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in leishmaniasis therapy. Nanomedicine (London), 10, 387–403. [CrossRef] [Google Scholar]
  5. Berenguer D, Alcover MM, Sessa M, Halbaut L, Guillén C, Boix-Montañés A, Fisa R, Calpena-Campmany AC, Riera C, Sosa L. 2020. Topical amphotericin B semisolid dosage form for cutaneous leishmaniasis: Physicochemical characterization, ex vivo skin permeation and biological activity. Pharmaceutics, 12, e149. [CrossRef] [PubMed] [Google Scholar]
  6. Cabral LIL, Pomel S, Cojean S, Amado PSM, Loiseau PM, Cristiano MLS. 2020. Synthesis and Antileishmanial Activity of 1,2,4,5-Tetraoxanes against Leishmania donovani. Molecules, 25, e465. [CrossRef] [PubMed] [Google Scholar]
  7. Calixto SL, Glanzmann N, Xavier Silveira MM, Granato JT, Scopel KKG, Aguiar TT, DaMatta RA, Macedo GC, Silva AD, Coimbra ES. 2018. Novel organic salts based on quinoline derivatives: the in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chemico-Biological Interactions, 293, 141–151. [CrossRef] [PubMed] [Google Scholar]
  8. Carregal VM, Lanza JS, Souza DM, Islam A, Demicheli C, Fujiwara RT, Rivas L, Frézard F. 2019. Combination oral therapy against Leishmania amazonensis infection in BALB/c mice using nanoassemblies made from amphiphilic antimony(V) complex incorporating miltefosine. Parasitology Research, 118, 3077–3084. [CrossRef] [PubMed] [Google Scholar]
  9. Chávez-Fumagalli MA, Ribeiro TG, Castilho RO, Fernandes SO, Cardoso VN, Coelho CS, Mendonça DV, Soto M, Tavares CA, Faraco AA, Coelho EA. 2015. New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Revista da Sociedade Brasileira de Medicina Tropical, 48, 235–242. [CrossRef] [PubMed] [Google Scholar]
  10. Coelho EAF, Tavares CA, Carvalho FA, Chaves KF, Teixeira KN, Rodrigues RC, Charest H, Matlashewski G, Gazzinelli RT, Fernandes AP. 2003. Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infection and Immunity, 71, 3988–3994. [CrossRef] [PubMed] [Google Scholar]
  11. Coimbra ES, Antinarelli LM, Silva NP, Souza IO, Meinel RS, Rocha MN, Soares RP, da Silva AD. 2016. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chemico-Biological Interactions, 260, 50–57. [CrossRef] [PubMed] [Google Scholar]
  12. Coura-Vital W, Araújo VE, Reis IA, Amancio FF, Reis AB, Carneiro M. 2014. Prognostic factors and scoring system for death from visceral leishmaniasis: an historical cohort study in Brazil. PLOS Neglected Tropical Diseases, 8, e3374. [CrossRef] [PubMed] [Google Scholar]
  13. Cunha-Júnior EF, Pacienza-Lima W, Ribeiro GA, Netto CD, do Canto-Cavalheiro MM, da Silva AJ, Costa PR, Rossi-Bergmann B, Torres-Santos EC. 2011. Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. Journal of Antimicrobial Chemotherapy, 66, 1555–1559. [CrossRef] [Google Scholar]
  14. Deep DK, Singh R, Bhandari V, Verma A, Sharma V, Wajid S, Sundar S, Ramesh V, Dujardin JC, Salotra P. 2017. Increased miltefosine tolerance in clinical isolates of Leishmania donovani is associated with reduced drug accumulation, increased infectivity and resistance to oxidative stress. PLOS Neglected Tropical Diseases, 11, e0005641. [CrossRef] [PubMed] [Google Scholar]
  15. Dias DS, Ribeiro PAF, Martins VT, Lage DP, Costa LE, Chávez-Fumagalli MA, Ramos FF, Santos TTO, Ludolf F, Oliveira JS, Mendes TAO, Silva ES, Galdino AS, Duarte MC, Roatt BM, Menezes-Souza D, Teixeira AL, Coelho EAF. 2018. Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Translational Research, 200, 18–34. [CrossRef] [Google Scholar]
  16. Dorlo TP, Balasegaram M, Beijnen JH, Vries PJ. 2012. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67, 2576–2597. [CrossRef] [Google Scholar]
  17. Duarte MC, Lage LM, Lage DP, Martins VT, Carvalho AM, Roatt BM, Menezes-Souza D, Tavares CA, Alves RJ, Barichello JM, Coelho EA. 2016. Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitology International, 65, 728–736. [CrossRef] [PubMed] [Google Scholar]
  18. Duarte MC, Lage LM, Lage DP, Martins VT, Carvalho AM, Roatt BM, Menezes-Souza D, Tavares CA, Alves RJ, Barichello JM, Coelho EA. 2016. Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitology International, 65, 728–736. [CrossRef] [PubMed] [Google Scholar]
  19. Fernández OL, Diaz-Toro Y, Ovalle C, Valderrama L, Muvdi S, Rodríguez I, Gomez MA, Saravia NG. 2014. Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLOS Neglected Tropical Diseases, 8, e2871. [CrossRef] [PubMed] [Google Scholar]
  20. Frézard F, Demicheli C, Ribeiro RR. 2009. Pentavalent antimonials: new perspectives for old drugs. Molecules, 14, 2317–2336. [CrossRef] [PubMed] [Google Scholar]
  21. Gonçalves GS, Fernandes AP, Souza RC, Cardoso JE, de Oliveira-Silva F, Maciel FC, Rabello A, Ferreira LA. 2005. Activity of a paromomycin hydrophilic formulation for topical treatment of infections by Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. Acta Tropica, 93, 161–167. [CrossRef] [PubMed] [Google Scholar]
  22. Goyal V, Burza S, Pandey K, Singh SN, Singh RS, Strub-Wourgaft N, Das VNR, Bern C, Hightower A, Rijal S, Sunyoto T, Alves F, Lima N, Das P, Alvar J. 2019. Field effectiveness of new visceral leishmaniasis regimens after 1 year following treatment within public health facilities in Bihar, India. PLOS Neglected Tropical Diseases, 13, e0007726. [CrossRef] [PubMed] [Google Scholar]
  23. Gupta PK, Jaiswal AK, Kumar V, Verma A, Dwivedi P, Dube A, Mishra PR. 2014. Covalent functionalized self-assembled lipo-polymerosome bearing amphotericin B for better management of leishmaniasis and its toxicity evaluation. Molecular Pharmacology, 11, 951–963. [Google Scholar]
  24. Hernández-Chinea C, Carbajo E, Sojo F, Arvelo F, Kouznetsov VV, Romero-Bohórquez AR, Romero PJ. 2015. In vitro activity of synthetic tetrahydroindeno[2,1-c]quinolines on Leishmania mexicana. Parasitology International, 64, 479–483. [CrossRef] [PubMed] [Google Scholar]
  25. Italia JL, Kumar MN, Carter KC. 2012. Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. Journal of Biomedical Nanotechnology, 8, 695–702. [CrossRef] [PubMed] [Google Scholar]
  26. James-Smith MA, Shekhawat D, Moudgil BM, Shah DO. 2007. Determination of drug and fatty acid binding capacity to Pluronic F127 in microemulsion. Langmuir, 23, 1640–1644. [CrossRef] [PubMed] [Google Scholar]
  27. Kataoka K, Harada A, Nagasaki Y. 2001. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 47, 113–131. [CrossRef] [PubMed] [Google Scholar]
  28. Kevric I, Cappel MA, Keeling JH. 2015. New World and Old World Leishmania infections: a practical review. Dermatologic Clinics, 33, 579–593. [CrossRef] [PubMed] [Google Scholar]
  29. Kwon GS, Kataoka K. 1995. Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Reviews, 16, 295–309. [Google Scholar]
  30. Lage LM, Barichello JM, Lage DP, Mendonça DV, Carvalho AM, Rodrigues MR, Menezes-Souza D, Roatt BM, Alves RJ, Tavares CA, Coelho EA, Duarte MC. 2016. An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitology Research, 115, 4083–4095. [CrossRef] [PubMed] [Google Scholar]
  31. Lamch L, Bazylińska U, Kulbacka J, Pietkiewicz J, Bieżuńska-Kusiak K, Wilk KA. 2014. Polymeric micelles for enhanced Photofrin II® delivery, cytotoxicity and pro-apoptotic activity in human breast and ovarian cancer cells. Photodiagnosis and Photodynamic Therapy, 11, 570–585. [CrossRef] [PubMed] [Google Scholar]
  32. Machín L, Tamargo B, Piñón A, Atíes RC, Scull R, Setzer WN, Monzote L. 2019. Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) essential oils formulated in nanocochleates against Leishmania amazonensis. Molecules, 24, e4222. [CrossRef] [PubMed] [Google Scholar]
  33. Maspi N, Abdoli A, Ghaffarifar F. 2016. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review. Pathogens and Global Health, 110, 247–260. [CrossRef] [PubMed] [Google Scholar]
  34. Mendonça DVC, Martins VT, Lage DP, Dias DS, Ribeiro PAF, Carvalho AMRS, Dias ALT, Miyazaki CK, Menezes-Souza D, Roatt BM, Tavares CAP, Barichello JM, Duarte MC, Coelho EAF. 2018. Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Experimental Parasitology, 186, 24–35. [CrossRef] [PubMed] [Google Scholar]
  35. Mendonça DVC, Tavares GSV, Lage DP, Soyer TG, Carvalho LM, Dias DS, Ribeiro PAF, Ottoni FM, Antinarelli LMR, Vale DL, Ludolf F, Duarte MC, Coimbra ES, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Barichello JM, Alves RJ, Coelho EAF. 2019. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomedicine & Pharmacotherapy, 109, 779–787. [CrossRef] [Google Scholar]
  36. Oliveira LFG, Souza-Silva F, Cysne-Finkelstein L, Rabelo K, Amorim JF, Azevedo AS, Bourguignon SC, Ferreira VF, Paes MV, Alves CR. 2017. Evidence for tissue toxicity in BALB/c exposed to a long-term treatment with oxiranes compared to meglumine antimoniate. BioMed Research International, 2017, 9840210. [PubMed] [Google Scholar]
  37. Oliveira LFG, Souza-Silva F, de Castro Côrtes LM, Cysne-Finkelstein L, Souza-Pereira MC, Oliveira-Junior FO, Pinho RT, Corte-Real S, Bourguignon SC, Ferreira VF, Alves CR. 2018. Antileishmanial activity of 2-methoxy-4 h-spiro-[naphthalene-1,2’-oxiran]-4-one (epoxymethoxy-lawsone): A promising new drug candidate for leishmaniasis treatment. Molecules, 23, e864. [CrossRef] [PubMed] [Google Scholar]
  38. Palić S, Bhairosing P, Beijnen JH, Dorlo TPC. 2019. Systematic review of host-mediated activity of miltefosine in leishmaniasis through immunomodulation. Antimicrobial Agents and Chemotherapy, 63, e02507–e02518. [PubMed] [Google Scholar]
  39. Passero LFD, Cruz LA, Santos-Gomes G, Rodrigues E, Laurenti MD, Lago JHG. 2018. Conventional versus natural alternative treatments for leishmaniasis: A review. Current Topics in Medicinal Chemistry, 18, 1275–1286. [CrossRef] [PubMed] [Google Scholar]
  40. Pellosi DS, Moret F, Fraix A, Marino N, Maiolino S, Gaio E, Hioka N, Reddi E, Sortino S, Quaglia F. 2016. Pluronic® P123/F127 mixed micelles delivering sorafenib and its combination with verteporfin in cancer cells. International Journal of Nanomedicine, 11, 4479–4494. [CrossRef] [PubMed] [Google Scholar]
  41. Pham TT, Loiseau PM, Barratt G. 2013. Strategies for the design of orally bioavailable antileishmanial treatments. International Journal of Pharmaceutics, 454, 539–552. [CrossRef] [PubMed] [Google Scholar]
  42. Raja MRC, Velappan AB, Chellappan D, Debnath J, Mahapatra SK. 2017. Eugenol derived immunomodulatory molecules against visceral leishmaniasis. European Journal of Medicinal Chemistry, 139, 503–518. [CrossRef] [PubMed] [Google Scholar]
  43. Ramesh V, Dixit KK, Sharma N, Singh R, Salotra P. 2020. Assessing the efficacy and safety of liposomal amphotericin B and miltefosine in combination for treatment of post kala-azar dermal leishmaniasis. Journal of Infectious Diseases, 22, 608–617. [CrossRef] [Google Scholar]
  44. Rebello KM, Andrade-Neto VV, Gomes CRB, de Souza MVN, Branquinha MH, Santos ALS, Torres-Santos EC, d’Avila-Levy CM. 2019. Miltefosine-lopinavir combination therapy against Leishmania infantum infection: in vitro and in vivo approaches. Frontiers in Cellular and Infection Microbiology, 9, 229. [CrossRef] [PubMed] [Google Scholar]
  45. Ribeiro TG, Chávez-Fumagall MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, Lage PS, Andrade PH, Lage DP, Arruda LV, Abánades DR, Costa LE, Martins VT, Tavares CA, Castilho RO, Coelho EA, Faraco AA. 2014. Novel targeting using nanoparticles: An approach to the development of an effective anti-leishmanial drug-delivery system. International Journal of Nanomedicine, 9, 877–890. [CrossRef] [PubMed] [Google Scholar]
  46. Silva EJ, Bezerra-Souza A, Passero LF, Laurenti MD, Ferreira GM, Fujii DG, Trossini GH, Raminelli C. 2018. Synthesis, leishmanicidal activity, structural descriptors and structure-activity relationship of quinoline derivatives. Future Medicinal Chemistry, 10, 2069–2085. [CrossRef] [PubMed] [Google Scholar]
  47. Singh PK, Pawar VK, Jaiswal AK, Singh Y, Srikanth CH, Chaurasia M, Bora HK, Raval K, Meher JG, Gayen JR, Dube A, Chourasia MK. 2017. Chitosan coated Pluronic F127 micelles for effective delivery of amphotericin B in experimental visceral leishmaniasis. International Journal of Biological Macromolecules, 105, 1220–1231. [CrossRef] [PubMed] [Google Scholar]
  48. Sousa JKT, Antinarelli LMR, Mendonça DVC, Lage DP, Tavares GSV, Dias DS, Ribeiro PAF, Ludolf F, Coelho VTS, Oliveira-da-Silva JA, Perin L, Oliveira BA, Alvarenga DF, Chávez-Fumagalli MA, Brandão GC, Nobre V, Pereira GR, Coimbra ES, Coelho EAF. 2019. A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis. Parasitology International, 73, 101966. [CrossRef] [PubMed] [Google Scholar]
  49. Srivastava S, Mishra J, Gupta AK, Singh A, Shankar P, Singh S. 2017. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasite & Vectors, 10, 49. [CrossRef] [Google Scholar]
  50. Sundar S, Chakravarty J. 2013. Leishmaniasis: An update of current pharmacotherapy. Expert Opinion on Pharmacotherapy, 14, 53–63. [CrossRef] [PubMed] [Google Scholar]
  51. Sundar S, Olliaro PL. 2007. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Therapeutics and Clinical Risk Management, 3, 733–740. [PubMed] [Google Scholar]
  52. Sundar S, Pandey K, Thakur CP, Jha TK, Das VN, Verma N, Lal CS, Verma D, Alam S, Das P. 2014. Efficacy and safety of amphotericin B emulsion versus liposomal formulation in Indian patients with visceral leishmaniasis: a randomized, open-label study. PLoS Neglected Tropical Diseases, 8, e3169. [CrossRef] [PubMed] [Google Scholar]
  53. Sundar S, Singh A. 2016. Recent developments and future prospects in the treatment of visceral leishmaniasis. Therapeutic Advances in Infectious Disease, 3, 98–109. [CrossRef] [PubMed] [Google Scholar]
  54. Sundar S, Singh A. 2018. Chemotherapeutics of visceral leishmaniasis: present and future developments. Parasitology, 145, 481–489. [CrossRef] [PubMed] [Google Scholar]
  55. Tavares GSV, Mendonça DVC, Lage DP, Granato JDT, Ottoni FM, Ludolf F, Chávez-Fumagalli MA, Duarte MC, Tavares CAP, Alves RJ, Coimbra ES, Coelho EAF. 2018. Antileishmanial activity, cytotoxicity and mechanism of action of clioquinol against Leishmania infantum and Leishmania amazonensis species. Basic & Clinical Pharmacology & Toxicology, 123, 236–246. [CrossRef] [PubMed] [Google Scholar]
  56. Tavares GSV, Mendonça DVC, Miyazaki CK, Lage DP, Soyer TG, Carvalho LM, Ottoni FM, Dias DS, Ribeiro PAF, Antinarelli LMR, Ludolf F, Duarte MC, Coimbra ES, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Barichello JM, Alves RJ, Coelho EAF. 2019. A Pluronic® F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection. Parasitology International, 68, 63–72. [CrossRef] [PubMed] [Google Scholar]
  57. Tomiotto-Pellissier F, Bortoleti BTDS, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, Conchon-Costa I, Bordignon J, Pavanelli WR. 2018. Macrophage polarization in leishmaniasis: broadening horizons. Frontiers in Immunology, 9, 2529. [CrossRef] [PubMed] [Google Scholar]
  58. Vijayakumar S, Das P. 2018. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Tropica, 181, 95–104. [CrossRef] [PubMed] [Google Scholar]
  59. Wang Y, Yu L, Han L, Sha X, Fang X. 2007. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. International Journal of Pharmaceutics, 337, 63–73. [CrossRef] [PubMed] [Google Scholar]
  60. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team. 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 7, e35671. [CrossRef] [PubMed] [Google Scholar]
  61. World Health Organization. 2018. Leishmaniasis,, Accessed data: 2 June 2018. [Google Scholar]
  62. World Health Organisation. 2019. WHO and Gilead extend collaboration against visceral leishmaniasis, cited 2019 03/10/2019. [Google Scholar]
  63. Zhang W, Shi Y, Chen Y, Hao J, Sha X, Fang X. 2011. The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials, 32, 5934–5944. [CrossRef] [PubMed] [Google Scholar]
  64. Zijlstra EE. 2016. The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasite & Vectors, 9, 464. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.