Open Access
Research Article
Issue
Parasite
Volume 27, 2020
Article Number 25
Number of page(s) 7
DOI https://doi.org/10.1051/parasite/2020023
Published online 17 April 2020
  1. Afonso E, Thulliez P, Gilot-Fromont E. 2006. Transmission of Toxoplasma gondii in an urban population of domestic cats (Felis catus). International Journal for Parasitology, 36, 1373–1382. [CrossRef] [PubMed] [Google Scholar]
  2. Alvarez C, Vargas M, Herrera C, Uribe-Huertas LD, Lora F, Gómez-Marín JE. 2015. Striking divergence in Toxoplasma ROP16 nucleotide sequences from human and meat samples. Journal of Infectious Diseases, 211, 1–8. [CrossRef] [Google Scholar]
  3. Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. [CrossRef] [PubMed] [Google Scholar]
  4. Berger-Schoch AE, Herrmann DC, Schares G, Müller N, Bernet D, Gottstein B, Frey CF. 2011. Prevalence and genotypes of Toxoplasma gondii in feline faeces (oocysts) and meat from sheep, cattle and pigs in Switzerland. Veterinary Parasitology, 177, 290–297. [CrossRef] [PubMed] [Google Scholar]
  5. Burg JL, Grover CM, Pouletty P, Boothroyd JC. 1989. Direct and sensitive detection of a pathogenic direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. Journal of Clinical Microbiology, 27, 1787–1792. [CrossRef] [PubMed] [Google Scholar]
  6. Cañón-Franco WA, López-Orozco N, Gómez-Marín JE, Dubey JP. 2014. An overview of seventy years of research (1944–2014) on toxoplasmosis in Colombia, South America. Parasites & Vectors, 7, 427. [CrossRef] [PubMed] [Google Scholar]
  7. Dabritz HA, Miller MA, Atwill ER, Gardner IA, Leutenegger CM, Melli AC, Conrad PA. 2007. Detection of Toxoplasma gondii-like oocysts in cat feces and estimates of the environmental oocyst burden. Journal of the American Veterinary Medical Association, 231, 1676–1684. [CrossRef] [PubMed] [Google Scholar]
  8. Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. [CrossRef] [PubMed] [Google Scholar]
  9. Dubey JP. 2009. History of the discovery of the life cycle of Toxoplasma gondii. International Journal for Parasitology, 39, 877–882. [CrossRef] [PubMed] [Google Scholar]
  10. Dubey JP, Cortes-Vecino JA, Vargas-Duarte JJ, Sundar N, Velmurugan GV, Bandini LM, Polo LJ, Zambrano L, Mora LE, Kwok OCH, Smith T, Su C. 2006. Prevalence of Toxoplasma gondii in cats from Colombia, South America and genetic characterization of T. gondii isolates. Veterinary Parasitology, 145, 45–50. [Google Scholar]
  11. Dumètre A, Dardé ML. 2003. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews, 27, 651–661. [CrossRef] [PubMed] [Google Scholar]
  12. Echeverry DM, Giraldo MI, Castaño JC. 2012. Prevalencia de helmintos intestinales en gatos domésticos del departamento del Quindío, Colombia. Biomédica, 32, 430–436. [Google Scholar]
  13. Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP. 2010. Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends in Parasitology, 26, 190–196. [CrossRef] [PubMed] [Google Scholar]
  14. Esteves F, Aguiar D, Rosado J, Costa ML, de Sousa B, Antunes F, Matos O. 2014. Toxoplasma gondii prevalence in cats from Lisbon and in pigs from centre and south of Portugal. Veterinary Parasitology, 200, 8–12. [CrossRef] [PubMed] [Google Scholar]
  15. Gao J, Xie Y, Xu Z, Chen H, Hide G, Yang T, Shen J, Lai D. 2017. Genetic analyses of Chinese isolates of Toxoplasma gondii reveal a new genotype with high virulence to murine hosts. Veterinary Parasitology, 241, 52–60. [CrossRef] [PubMed] [Google Scholar]
  16. Gómez-Marin JE, De-la-Torre A, Angel-Muller E, Rubio J, Arenas J, Osorio E, Nuñez L, Pinzon L, Mendez-Cordoba LC, Bustos A, De-la-Hoz I, Silva P, Beltran M, Chacon L, Marrugo M, Manjarres C, Baquero H, Lora F, Torres E, Zuluaga OE, Estrada M, Moscote L, Silva MT, Rivera R, Molina A, Najera S, Sanabria A, Ramirez ML, Alarcon C, Restrepo N, Falla A, Rodriguez T, Castaño G. 2011. First Colombian multicentric newborn screening for congenital toxoplasmosis. PLoS Neglected Tropical Diseases, 5, e1195. [CrossRef] [PubMed] [Google Scholar]
  17. Hand M, Thatcher C, Remillard R, Roudebush P. 2000. Nutrición Clínica de los Pequeños Animales, 4th edn. Mark Morris: Colombia. [Google Scholar]
  18. Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. Jones JL, Dubey JP. 2012. Foodborne toxoplasmosis. Clinical Infectious Diseases, 55, 845–851. [CrossRef] [Google Scholar]
  20. Jung BK, Lee SE, Lim H, Cho J, Kim DG, Song H, Kim MJ, Shin EH, Chai JY. 2015. Toxoplasma gondii B1 gene detection in feces of stray cats around Seoul, Korea and genotype analysis of two laboratory-passaged isolates. Korean Journal of Parasitology, 53, 259–263. [CrossRef] [Google Scholar]
  21. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. [CrossRef] [PubMed] [Google Scholar]
  22. Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. [CrossRef] [PubMed] [Google Scholar]
  23. Lee SE, Kim JY, Kim YA, Cho SH, Ahn HJ, Woo HM, Lee WJ, Nam HW. 2010. Prevalence of Toxoplasma gondii infection in stray and household cats in regions of Seoul, Korea. Korean Journal of Parasitology, 48, 267–270. [CrossRef] [Google Scholar]
  24. Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. [Google Scholar]
  25. Lélu M, Villena I, Dardé M, Aubert D, Geers R, Dupuis E, Marnef F. 2012. Quantitative estimation of the viability of Toxoplasma gondii oocysts in soil. Applied and Environmental Microbiology, 78, 5127–5132. [CrossRef] [PubMed] [Google Scholar]
  26. Lilly EL, Wortham CD. 2013. High prevalence of Toxoplasma gondii oocyst shedding in stray and pet cats (Felis catus) in Virginia, United States. Parasites & Vectors, 6, 266. [CrossRef] [PubMed] [Google Scholar]
  27. Liu Q, Wang ZD, Huang SY, Zhu XQ. 2015. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites and Vectors, 8, 1–14. [CrossRef] [Google Scholar]
  28. Subdirección de salud ambiental. 2018. Reporte de vacunación antirrábica de perros y gatos Colombia 2017. MINSALUD, Gobierno de Colombia. [Google Scholar]
  29. Montoya-de-Londono MT, Castano-Osorio JC, Gomez-Marin JE. 1997. A maternal screening program for congenital toxoplasmosis in Quindio, Colombia and application of mathematical models to estimate incidences using age-stratified data. American Journal of Tropical Medicine and Hygiene, 57, 180–186. [CrossRef] [Google Scholar]
  30. Montoya-Londoño MT, Loango-Chamorro N, Sierra-Infante M, Castaño-Osorio J. 1998. Infección por Toxoplasma gondii en gatos de dos barrios del sur de Armenia y su importancia en la toxoplasmosis humana. Colbaquin Actualidades Clínicas y Biotecnológicas, 12, 18–23. [Google Scholar]
  31. Ponce N, Gomez-Marin JE. 2003. Estandarización y validación clínica de la prueba de reacción en cadena de la polimerasa (PCR) para diagnóstico de toxoplasmosis cerebral en pacientes infectados por el VIH. Infectio, 7, 8–14. [Google Scholar]
  32. Poulle M, Josse-Dupuis É, Villena I, Aubert D. 2016. Detection of Toxoplasma gondii DNA by qPCR in the feces of a cat that recently ingested infected prey does not necessarily imply oocyst shedding. Parasite, 23, 29. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Ramos S, Fátima H, Pena DJ, Gonçalves A, Maria L, De Faria J, Gonzales B, Oliveira S, Maria S, Ramos S, Amélia N. 2018. Characterization of Toxoplasma gondii isolates from herds of sheep in southern Brazil reveals the archetypal type II genotype and new non- archetypal genotypes. Parasitology International, 67, 59–63. [CrossRef] [PubMed] [Google Scholar]
  34. Rêgo WMF, Costa JGL, Baraviera RCA, Pinto LV, Bessa GL, Lopes REN, Vitor RWA. 2017. Association of ROP18 and ROP5 was efficient as a marker of virulence in atypical isolates of Toxoplasma gondii obtained from pigs and goats in Piauí, Brazil. Veterinary Parasitology, 247, 19–25. [CrossRef] [PubMed] [Google Scholar]
  35. Ritchie LS. 1948. An ether sedimentation technique for routine stool examinations. Bulletin of U.S. Army Medical Department, 8, 326. [Google Scholar]
  36. Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. 2018. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. Parasite, 25, 14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Saevik BK, Krontveit RI, Eggen KP, Malmberg N, Thoresen SI, Prestrud KW. 2015. Toxoplasma gondii seroprevalence in pet cats in Norway and risk factors for seropositivity. Journal of Feline Medicine and Surgery, 17(12), 1049–1056. [CrossRef] [PubMed] [Google Scholar]
  38. Sánchez V, Gómez-Marín JE. 2014. Characterization of ROP18 alleles in human toxoplasmosis. Parasitology International, 63, 463–469. [CrossRef] [PubMed] [Google Scholar]
  39. Stadler T. 2009. On incomplete sampling under birth–death models and connections to the sampling-based coalescent. Journal of Theoretical Biology, 261, 58–66. [CrossRef] [PubMed] [Google Scholar]
  40. Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30, 1217–1258. [CrossRef] [PubMed] [Google Scholar]
  41. Triviño-Valencia J, Lora F, Zuluaga JD, Gomez-Marin JE. 2016. Detection by PCR of pathogenic protozoa in raw and drinkable water samples in Colombia. Parasitology Research, 115, 1789–1797. [CrossRef] [PubMed] [Google Scholar]
  42. Vanwormer E, Conrad PA, Miller MA, Melli AC, Carpenter TE, Mazet JAK. 2013. Toxoplasma gondii, source to sea: Higher contribution of domestic felids to terrestrial parasite loading despite lower infection prevalence. EcoHealth, 10, 277–289. [Google Scholar]
  43. Vanwormer E, Fritz H, Shapiro K, Mazet JAK, Conrad PA. 2013. Molecules to modeling : Toxoplasma gondii oocysts at the human – animal – environment interface. Comparative Immunology, Microbiology and Infectious Diseases, 36, 217–231. [CrossRef] [PubMed] [Google Scholar]
  44. Wastling JM, Nicoll S, Buxton D. 1993. Comparison of two gene amplification methods for the detection of Tomplasma gondii in experimentally infected sheep. Journal of Medical Microbiology, 38, 360–365. [CrossRef] [PubMed] [Google Scholar]
  45. Zamora-Vélez A, Cuadrado-Ríos S, Triviño-Valencia J. 2016. Genetic diversity and phylogeny of Toxoplasma gondii based on B1 partial sequences from colombia and other countries. Revista de la Asociación Colombiana de Ciencias Biológicas, 28, 8–15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.