Open Access
Volume 26, 2019
Article Number 52
Number of page(s) 12
Published online 23 August 2019
  1. Abe N, Teramoto I. 2017. Anisakis haemoglobin is a main antigen indicung strong and prolonged immunoreactions in rats. Parasitology Research, 116, 2035–2039. [CrossRef] [PubMed] [Google Scholar]
  2. Aibinu IE, Smooker PM, Lopata L. 2019. Anisakis nematodes in fish and shellfish- from infection to allergies. International Journal for Parasitology, Parasites and Wildlife, 9, 384–393. [CrossRef] [Google Scholar]
  3. Anadón A, Romarís F, Escalante M, Rodríguez E, Gárate T, Cuéllar C, Ubeira F. 2009. The Anisakis simplex Ani s 7 major allergen as an indicator of true Anisakis infections. Clinical & Experimental Immunology, 156, 471–478. [CrossRef] [Google Scholar]
  4. Bahlool QZ, Skovgaard A, Kania PW, Buchmann K. 2013. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunology, 35, 734–739. [CrossRef] [Google Scholar]
  5. Baird FJ, Su X, Aibinu I, Nolan MJ, Sugiyama H, Otranto D, Lopata AL, Cantacessi C. 2016. The Anisakis transcriptome provides a resource for fundamental and applied studies on allergy-causing parasites. PLOS Neglected Tropical Diseases, 10, e0004845. [CrossRef] [PubMed] [Google Scholar]
  6. Barrett J, Brophy P. 2000. Ascaris haemoglobin: new tricks for an old protein. Parasitology Today, 16, 90–91. [CrossRef] [Google Scholar]
  7. Buchmann K. 1993. A note on the humoral immune response of infected Anguilla anguilla against the gill monogenean Pseudodactylogyus bini. Fish and Shellfish Immunology, 3, 397–399. [CrossRef] [Google Scholar]
  8. Bušelić I, Trumbic Z, Hrabar J, Vrbatovic A, Bocina I, Mladineo I. 2018. Molecular and cellular response to experimental Anisakis pegreffii (Nematoda, Anisakidae) third-stage larval infection in rats. Frontiers in Immunology, 9, 2055. [CrossRef] [PubMed] [Google Scholar]
  9. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622. [Google Scholar]
  10. Cavallero S, Lombardo F, Su X, Salvemini M, Cantacessi C, D’Amelio S. 2018. Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffii reveal potential molecular mechanisms involved in pathogenicity. Parasites & Vectors, 11, 31. [CrossRef] [PubMed] [Google Scholar]
  11. Chen HY, Cheng YS, Grabner DS, Chang SH, Shih HH. 2014. Effect of different temperatures on the expression of the newly characterized heat shock protein 90 (Hsp90) in L3 of Anisakis spp. isolated from Scomber australasicus. Veterinary Parasitology, 205, 540–550. [CrossRef] [PubMed] [Google Scholar]
  12. Chen HY, Cheng YS, Shih HH. 2015. Expression patterns and structural modelling of Hsp70 and Hsp90 in a fish-borne zoonotic nematode Anisakis pegreffii. Veterinary Parasitology, 212, 281–291. [CrossRef] [PubMed] [Google Scholar]
  13. Cho MK, Park MK, Kang SA, Caballero ML, Perez-Pinar T, Rodriguez-Perez R, Sun Ock M, Jae Cha H, Chul Hong Y, Sun YuH. 2014. Allergenicity of two Anisakis simplex allergens evaluated in vivo using an experimental mouse model. Experimental Parasitology, 146, 71–77. [CrossRef] [PubMed] [Google Scholar]
  14. Cipriani P, Acerra V, Bellisario B, Sbaraglia GL, Cheleschi R, Nascetti G, Mattiucci S. 2016. Larval migration of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus: Implications to seafood safety. Food Control, 59, 148–157. [CrossRef] [Google Scholar]
  15. Cipriani P, Sbaraglia GL, Palomba M, Giulietti L, Bellisario B, Bušelić I, Mladineo I, Cheleschi R, Nascetti G, Mattiucci S. 2018. Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy Engraulis encrasicolus, from the Mediterranean Sea: considerations in relation to fishing ground as a driver for parasite distribution. Fisheries Research, 202, 59–68. [CrossRef] [Google Scholar]
  16. Clarke A. 2004. Is there a universal temperature dependence of metabolism? Functional Ecology, 18, 243–251. [CrossRef] [Google Scholar]
  17. Coakley G, Maizels RM, Buck AH. 2015. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends in Parasitology, 31, 477–489. [CrossRef] [PubMed] [Google Scholar]
  18. Coscia MR, Morea V, Tramontano A, Oreste U. 2000. Analysis of cDNA sequence encoding the immunoglobulin heavy chain of the antarctic teleost Trematomus bernacchii. Fish & Shellfish Immunology, 10, 343–357. [CrossRef] [PubMed] [Google Scholar]
  19. Coscia MR, Oreste U. 1998. Presence of antibodies specific for proteins of Contracaecum osculatum (Rudolphi, 1908) in plasma of several Antarctic teleosts. Fish & Shellfish Immunology, 8, 295–302. [CrossRef] [Google Scholar]
  20. D’Amelio S, Mathiopoulos K, Brandonisio O, Lucarelli G, Doronzo F, Paggi L. 1999. Diagnosis of a case of gastric anisakidosis by PCR-based restriction fragment length polymorphism analysis. Parassitologia, 41, 591–593. [PubMed] [Google Scholar]
  21. Daschner A, Cuellar C, Rodero M. 2012. The Anisakis allergy debate: does an evolutionary approach help? Trends in Parasitology, 28, 9–15. [CrossRef] [PubMed] [Google Scholar]
  22. Fumarola L, Monno R, Ierardi E, Rizzo G, Giannelli G, Lalle M, Pozio E. 2009. Anisakis pegreffi etiological agent of gastric infections in two Italian women. Foodborne pathogens disease, 6, 1157–1159. [CrossRef] [PubMed] [Google Scholar]
  23. Goldberg DE. 1999. Oxygen-avid hemoglobin of Ascaris. Chemical Reviews, 99, 3371–3378. [CrossRef] [PubMed] [Google Scholar]
  24. Gonzalez-Fernandez J, Daschner A, Nieuwenhuizen NE, Lopata AL, Frutos CD, Valls A, Cuellar C. 2015. Haemoglobin, a new major allergen of Anisakis simplex. International Journal for Parasitology, 45, 399–407. [CrossRef] [PubMed] [Google Scholar]
  25. Guardone L, Armani A, Nucera D, Costanzo F, Mattiucci S, Bruschi F. 2018. Human anisakiasis in Italy: a retrospective epidemiological study over two decades. Parasite, 25, 41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Haarder S, Kania PW, Buchmann K. 2013. Comparative infectivity of three larval nematode species in three different salmonids. Parasitology Research, 112, 2997–3004. [CrossRef] [PubMed] [Google Scholar]
  27. Hrabar J, Trumbic Z, Bocina I, Buselic I, Vrbatovic A, Mladineo I. 2019. Interplay between proinfiammatory cytokines, miRNA, and tissue lesions in Anisakis-infected Sprague-Dawley rats. PloS Neglected Tropical Diseases, 13, e0007397. [CrossRef] [PubMed] [Google Scholar]
  28. Iglesias L, Valero A, Benitez R, Adroher FJ. 2001. In vitro cultivation of Anisakis simplex: pepsin increases survival and moulting from fourth larval to adult stage. Parasitology, 123, 285–291. [CrossRef] [PubMed] [Google Scholar]
  29. Kennedy MW. 1991. Parasitic Nematodes SH Antigens, Membranes & Genes. Taylor & Francis Ltd, London. [Google Scholar]
  30. Kim JH, Kim JO, Jeon CH, Nam UH, Subramaniyam S, Yoo SI, Park JH. 2018. Comparative transcriptome analyses of the third and fourth stage larvae of Anisakis simplex (Nematoda: Anisakidae). Molecular & Biochemical Parasitology, 226, 24–33. [CrossRef] [Google Scholar]
  31. Kobayashi Y, Kakemoto S, Shimakura K, Shiomi K. 2015. Molecular cloning and expression of a new major allergen, Ani s 14, from Anisakis simplex. Shokuhin Eiseigaku Zasshi, 56, 194–199. [CrossRef] [PubMed] [Google Scholar]
  32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. [CrossRef] [PubMed] [Google Scholar]
  33. Lim H, Jung B-K, Cho J, Yooyen T, Shin E-H, Chai J-Y. 2015. Molecular diagnosis of cause of anisakiasis in humans, South Korea. Emerging Infectious Diseases, 21, 342. [CrossRef] [PubMed] [Google Scholar]
  34. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods, 25, 402–408. [CrossRef] [PubMed] [Google Scholar]
  35. Matthews BE. 1982. Behaviour and enzyme release by Anisakis sp. larvae (Nematoda: Ascaridida). Journal of Helminthology, 56, 177–183. [CrossRef] [PubMed] [Google Scholar]
  36. Matthews BE. 1984. The source, release and specificity of proteolytic enzyme activity produced by Anisakis simplex larvae (Nematoda: Ascaridida) in vitro. Journal of Helminthology, 58, 175–185. [CrossRef] [Google Scholar]
  37. Mattiucci S, Paoletti M, Borrini F, Palumbo M, Palmieri RM, Gomes V, Casati A, Nascetti G. 2011. First molecular identification of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in a paraffin-embedded granuloma taken from a case of human intestinal anisakiasis in Italy. BMC Infectious Diseases, 11, 82. [CrossRef] [PubMed] [Google Scholar]
  38. Mattiucci S, Fazii P, De Rosa A, Paoletti M, Megna AS, Glielmo A, De Angelis M, Costa A, Meucci C, Calvaruso V, Sorrentini I, Palma G, Bruschi F, Nascetti G. 2013. Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emerging Infectious Diseases, 19, 496–499. [CrossRef] [PubMed] [Google Scholar]
  39. Mattiucci S, Cipriani P, Webb SC, Paoletti M, Marcer F, Bellisario B, Gibson DI, Nascetti G. 2014. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). Journal of Parasitology, 100, 199–214. [CrossRef] [Google Scholar]
  40. Mattiucci S, Acerra V, Paoletti M, Cipriani P, Levsen A, Webb S, Canestrelli D, Nascetti G. 2016. No more time to stay ‘single’in the detection of Anisakis pegreffii, A. simplex (s.s.) and hybridization events between them: a multi-marker nuclear genotyping approach. Journal of Parasitology, 143, 998–1011. [CrossRef] [PubMed] [Google Scholar]
  41. Mattiucci S, Colantoni A, Crisafi B, Mori-Ubaldini F, Caponi L, Fazii P, Nascetti G, Bruschi F. 2017a. IgE sensitization to Anisakis pegreffii in Italy: Comparison of two methods for the diagnosis of allergic anisakiasis. Parasite Immunology, 39, e12440. [CrossRef] [Google Scholar]
  42. Mattiucci S, Paoletti M, Colantoni A, Carbone A, Gaeta R, Proietti A, Frattaroli S, Fazii P, Bruschi F, Nascetti G. 2017b. Invasive anisakiasis by the parasite Anisakis pegreffii (Nematoda: Anisakidae): diagnosis by real-time PCR hydrolysis probe system and immunoblotting assay. BMC Infectious Diseases, 17, 530. [CrossRef] [PubMed] [Google Scholar]
  43. Mattiucci S, Cipriani P, Levsen A, Paoletti M, Nascetti G. 2018. Molecular epidemiology of Anisakis and anisakiasis: an ecological and evolutionary road map. Advances in Parasitology, 99, 93–263. [CrossRef] [PubMed] [Google Scholar]
  44. Mehrdana F, Buchmann K. 2017. Excretory/secretory products of anisakid nematodes: biological and pathological roles. Acta Veterinaria Scandinavica, 59, 42. [CrossRef] [PubMed] [Google Scholar]
  45. Mehrdana F, Kania W, Nazemi S, Buchmann K. 2017. Immunomodulatory effects of excretory/secretory compounds from Contracaecum osculatum larvae in zebrafish inflammation model. Plos One, 12, e0181277. [CrossRef] [PubMed] [Google Scholar]
  46. Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS. 1999. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’. Nature, 401, 497. [CrossRef] [PubMed] [Google Scholar]
  47. Mladineo I, Popović M, Drmić-Hofman I, Poljak V. 2015. A case report of Anisakis pegreffii (Nematoda, Anisakidae) identified from archival paraffin sections of a Croatian patient. BMC Infectious Diseases, 16, 42. [CrossRef] [PubMed] [Google Scholar]
  48. Möller H. 1978. The effects of salinity and temperature on the development and survival of fish parasites. Journal of Fish Biology, 12, 311–323. [CrossRef] [Google Scholar]
  49. Moneo I, Caballero ML, Gómez F, Ortega E, Alonso MJ. 2000. Isolation and characterization of a major allergen from the fish parasite Anisakis simplex. Journal of Allergy and Clinical Immunology, 106, 177–182. [CrossRef] [Google Scholar]
  50. Napoletano C, Mattiucci S, Colantoni A, Battisti F, Zizzari IG, Rahimi H, Nuti M, Rughetti A. 2018. Anisakis pegreffii impacts differentiation and function of human dendritic cells. Parasite Immunology, 40, e12527. [CrossRef] [PubMed] [Google Scholar]
  51. Napoletano C, Rughetti A, Tarp MPA, Coleman J, Bennett EP, Picco G, Sale P, Denda-Nagai K, Irimura T, Mandel U. 2007. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Research, 67, 8358–8367. [CrossRef] [PubMed] [Google Scholar]
  52. Napoletano C, Zizzari I, Rughetti A, Rahimi H, Irimura T, Clausen H, Wandall HH, Belleudi F, Bellati F, Pierelli L, Frati L, Nuti M. 2012. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation. European Journal of Immunology, 42, 936–945. [CrossRef] [PubMed] [Google Scholar]
  53. Nieuwenhuizen NE, Lopata AL. 2016. Anisakis a food-borne parasite that triggers allergic host defences. International Journal of Parasitology, 43, 1047–1057. [CrossRef] [Google Scholar]
  54. Park J, Cho MK, Yu HS, Ahn SC. 2012. Identification of a 24 kDa excretory secretory protein in Anisakis simplex. Experimental Parasitology, 130, 69–72. [CrossRef] [PubMed] [Google Scholar]
  55. Peck LS. 2016. A cold limit to adaptation in the sea. Trends in Ecology & Evolution, 31, 13–26. [CrossRef] [PubMed] [Google Scholar]
  56. Priebe K, Huber C, Martlbauer E, Terplan G. 1991. Detection of antibodies against the larva of Anisakis simplex in the pollock Pollachius virens using ELISA. Journal of Veterinary Medicine, 38, 209–214. [CrossRef] [Google Scholar]
  57. Quiazon KM, Santos MD, Yoshinaga T. 2013. Anisakis species (Nematoda: Anisakidae) of Dwarf Sperm Whale Kogia sima (Owen, 1866) stranded off the Pacific coast of southern Philippine archipelago. Veterinary Parasitology, 197, 221–230. [CrossRef] [PubMed] [Google Scholar]
  58. Rodríguez E, Anadón A, García-Bodas E, Romarís F, Iglesias R, Gárate T, Ubeira F. 2008. Novel sequences and epitopes of diagnostic value derived from the Anisakis simplex Ani s 7 major allergen. Journal of Allergy and Clinical Immunology, 63, 219–225. [CrossRef] [Google Scholar]
  59. Shamsi S, Gasser R, Beveridge I. 2012. Genetic characterization and taxonomy of species of Anisakis (Nematoda: Anisakidae) parasitic in Australian marine mammals. Invertebrate Systematics, 26, 204–212. [CrossRef] [Google Scholar]
  60. Umehara A, Kawakami Y, Araki J, Uchida A. 2007. Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitology International, 56, 211–215. [CrossRef] [PubMed] [Google Scholar]
  61. van Vliet SJ, Saeland E, van Kooyk Y. 2008. Sweet preferences of MGL: carbohydrate specificity and function. Trends in Immunology, 29, 83–90. [CrossRef] [PubMed] [Google Scholar]
  62. Vidacek S, De las Heras C, Solas MT, Mendiz A, Rodríguez-Mahillo AI, Tejada M. 2010. Antigenicity and viability of Anisakis larvae infesting hake heated at different time-temperature conditions. Journal of Food Protection, 73, 62–68. [CrossRef] [PubMed] [Google Scholar]
  63. Vidacek S, De las Heras C, Solas MT, García M, Mendiz A, Tejada M. 2011. Viability and antigenicity of Anisakis simplex after conventional and microwave heating at fixed temperatures. Journal of Food Protection, 74, e2126. [CrossRef] [Google Scholar]
  64. White RR, Artavanis-Tsakonas K. 2012. How helminths use excretory secretory fractions to modulate dendritic cells. Virulence, 3, 668–677. [CrossRef] [PubMed] [Google Scholar]
  65. Widmann M. 2013. Impact of large-scale environmental features changes on host-parasite interaction in marine and freshwater ecosystems. BioSciences Master Reviews, 1, 1–9. [Google Scholar]
  66. Zizzari IG, Napoletano C, Battisti F, Rahimi H, Caponnetto S, Pierelli L, Nuti M, Rughetti A. 2015. MGL receptor and immunity: when the ligand can make the difference. Journal of Immunology Research, 2015, 450695. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.