Open Access
Volume 26, 2019
Article Number 18
Number of page(s) 9
Published online 26 March 2019
  1. Agarwal V, Bell GW, Nam J, Bartel DP. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4, e05005. [CrossRef] [Google Scholar]
  2. Banerjee D, Slack F. 2002. Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays, 24(2), 119–129. [CrossRef] [PubMed] [Google Scholar]
  3. Banerjee D, Slack FJ. 2005. Temporal and spatial patterning of an organ by a single transcription factor. Genome Biology, 6, 205. [CrossRef] [PubMed] [Google Scholar]
  4. Barrero R, Keeble-Gagnère G, Zhang B, Moolhuijzen P, Ikeo K, Tateno Y, Gojobori T, Guerrero FD, Lew-Tabor A, Bellgard M. 2011. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus. BMC Genomics, 12(1), 328. [CrossRef] [PubMed] [Google Scholar]
  5. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297. [CrossRef] [PubMed] [Google Scholar]
  6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770. [CrossRef] [PubMed] [Google Scholar]
  7. Berezikov E, Cuppen E, Plasterk RH. 2006. Approaches to microRNA discovery. Nature Genetics, 38, S2–S7. [CrossRef] [PubMed] [Google Scholar]
  8. Bostjancic E, Zidar N, Stajner D, Glavac D. 2010. MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biologica (Praha), 56, 27–31. [Google Scholar]
  9. Bryant B, Macdonald W, Raikhel AS. 2010. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the USA, 107(52), 22391–22398. [CrossRef] [Google Scholar]
  10. Cai B, Pan Z, Lu Y. 2010. The roles of microRNAs in heart diseases: a novel important regulator. Current Medicinal Chemistry, 17(5), 407–411. [CrossRef] [PubMed] [Google Scholar]
  11. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. 2005. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Research, 33(20), e179. [CrossRef] [PubMed] [Google Scholar]
  12. Flynt AS, Lai EC. 2008. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature Reviews Genetics, 9(11), 831–842. [CrossRef] [PubMed] [Google Scholar]
  13. Fujisaki K, Kawazu S, Kamio T. 1994. The taxonomy of the bovine Theileria spp. Parasitology Today, 10(1), 31–33. [CrossRef] [Google Scholar]
  14. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. 2008. miRBase: tools for microRNA genomics. Nucleic Acids Research, 36(Database issue), D154–D158. [CrossRef] [PubMed] [Google Scholar]
  15. M-a Hakimi, Cannella D. 2011. Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends in Parasitology, 27(11), 481–486. [CrossRef] [PubMed] [Google Scholar]
  16. Iliev ID, Leonardi I. 2017. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature Reviews Immunology, 17(10), 635–646. [CrossRef] [PubMed] [Google Scholar]
  17. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human MicroRNA targets. PLoS Biology, 2(11), e363. [CrossRef] [PubMed] [Google Scholar]
  18. Jongejan F, Uilenberg G. 2004. The global importance of ticks. Parasitology, 129(S1), S3–S14. [CrossRef] [PubMed] [Google Scholar]
  19. Krüger J, Rehmsmeier M. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34(Web Server issue), W451–454. [CrossRef] [PubMed] [Google Scholar]
  20. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), 25–34. [CrossRef] [Google Scholar]
  21. Liu Q, Tuo W, Gao H, Zhu XQ. 2010. MicroRNAs of parasites: current status and future perspectives. Parasitology Research, 107(3), 501–507. [CrossRef] [PubMed] [Google Scholar]
  22. Liu S, Li D, Li Q, Zhao P, Xiang Z, Xia Q. 2010. MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics, 11(1), 148. [CrossRef] [PubMed] [Google Scholar]
  23. Lin WC, Li SC, Lin WC, Shin JW, Hu SN, Yu XM, Huang TY, Chen SC, Chen HC, Chen SJ, Huang PJ, Gan RR, Chiu CH, Tang P. 2009. Identification of microRNA in the protist Trichomonas vaginalis. Genomics, 93(5), 487–493. [CrossRef] [PubMed] [Google Scholar]
  24. Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B. 2012. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Research, 40(10), 4298–4305. [CrossRef] [PubMed] [Google Scholar]
  25. Luo J, Liu GY, Chen Z, Ren QY, Yin H, Luo JX, Wang H. 2015. Identification and characterization of microRNA by deep-sequencing in Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks. Gene, 564(2), 125–133. [CrossRef] [Google Scholar]
  26. Martino ME, Ma D, Leulier F. 2017. Microbial influence on Drosophila biology. Current Opinion in Microbiology, 38, 165–170. [CrossRef] [PubMed] [Google Scholar]
  27. Magnarelli LA. 2009. Global importance of ticks and associated infectious disease agents. Clinical Microbiology Newsletter, 31(5), 33–37. [CrossRef] [Google Scholar]
  28. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906. [CrossRef] [PubMed] [Google Scholar]
  29. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108. [CrossRef] [PubMed] [Google Scholar]
  30. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8(4), 517–527. [CrossRef] [PubMed] [Google Scholar]
  31. Silveri L, Tilly G, Vilotte J-L, Le Provost F. 2006. MicroRNA involvement in mammary gland development and breast cancer. Reproduction Nutrition Development, 46(5), 549–556. [CrossRef] [EDP Sciences] [Google Scholar]
  32. Silver SJ, Hagen JW, Okamura K, Perrimon N, Lai EC. 2007. Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proceedings of the National Academy of Sciences of the USA, 104(46), 18151–18156. [CrossRef] [Google Scholar]
  33. Siomi H, Siomi MC. 2009. On the road to reading the RNA-interference code. Nature, 57(7228), 396–404. [CrossRef] [Google Scholar]
  34. Supek F, Škunca N. 2017. Visualizing GO Annotations. Methods in Molecular Biology, 1446, 207–220. [CrossRef] [Google Scholar]
  35. Wahid F, Shehzad A, Khan T, Kim YY. 2010. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica Biophysica Acta, 1803(11), 1231–1243. [CrossRef] [Google Scholar]
  36. Wang CR, Xu MJ, Fu JH, Nisbet AJ, Chang QC, Zhou DH, Huang SY, Zou FC, Zhu XQ. 2012. Characterization of microRNAs from Orientobilharzia turkestanicum, a neglected blood fluke of human and animal health significance. PloS One, 7(10), e47001. [CrossRef] [PubMed] [Google Scholar]
  37. Wang L, Wang M-B, Tu J-X, Helliwell CA, Waterhouse PM, Dennis ES, Fu TD, Fan YL. 2007. Cloning and characterization of microRNAs from Brassica napus. FEBS Letters, 581(20), 3848–3856. [CrossRef] [PubMed] [Google Scholar]
  38. Xu MJ, Ai L, Fu JH, Nisbet AJ, Liu QY, Chen MX, Zhou DH, Zhu XQ. 2012. Comparative characterization of microRNAs from the liver flukes Fasciola gigantica and F. hepatica. PloS One, 7(12), e53387. [CrossRef] [PubMed] [Google Scholar]
  39. Yan Y, Cui H, Jiang S, Huang Y, Huang X, Wei S, Peng J, Jiang S. 2011. Identification of a novel marine fish virus, Singapore grouper iridovirus-encoded microRNAs expressed in grouper cells by Solexa sequencing. PloS One, 6(4), e19148. [CrossRef] [PubMed] [Google Scholar]
  40. Zhang B, Pan X, Wang Q, Cobb GP, Anderson TA. 2006. Computational identification of microRNAs and their targets. Computional Biology and Chemistry, 30(6), 395–407. [CrossRef] [Google Scholar]
  41. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. 2006. Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Science, 63(2), 246–254. [CrossRef] [Google Scholar]
  42. Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ. 2010. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biology, 10(1), 3. [CrossRef] [PubMed] [Google Scholar]
  43. Zhao GH, Xu MJ, Zhu XQ. 2013. Identification and characterization of microRNAs in Baylisascaris schroederi of the giant panda. Parasites & Vectors, 6, 216. [CrossRef] [PubMed] [Google Scholar]
  44. Zhou J, Zhou Y, Cao J, Zhang H, Yu Y. 2013. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding. Experimental and Applied Acarology, 59(3), 339–349. [Google Scholar]
  45. Zorio E, Medina P, Rueda J, Millán JM, Arnau MA, Beneyto M, Marín F, Gimeno JR, Osca J, Salvador A, España F, Estellés A. 2009. Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets. Cardiovascular & Hematological Agents in Medicinal Chemistry, 7(1), 82–90. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.