Open Access
Review
Issue
Parasite
Volume 25, 2018
Article Number 14
Number of page(s) 21
DOI https://doi.org/10.1051/parasite/2018009
Published online 19 March 2018
  1. Abbaszadegan M, Huber MS, Gerba CP, Pepper IL. 1997. Detection of viable Giardia cysts by amplification of heat shock-induced mRNA. Applied and Environmental Microbiology, 63, 324–328. [PubMed] [Google Scholar]
  2. Adell AD, Miller WA, Harvey DJ, Van Wormer E, Wuertz S, Conrad PA. 2014. Individual subject meta-analysis of parameters for Giardia duodenalis shedding in animal experimental models. BioMed Research International, 2014, 476142. [Google Scholar]
  3. Agulló-Barceló M, Moss JA, Green J, Gillespie S, Codony F, Lucena F, Nocker A. 2014. Quantification of relative proportions of intact cells in microbiological samples using the example of Cryptosporidium parvum oocysts. Letters in Applied Microbiology, 58, 70–78. [CrossRef] [PubMed] [Google Scholar]
  4. Aksoy U, Marangi M, Papini R, Ozkoc S, Bayram Delibas S, Giangaspero A. 2014. Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by Real Time PCR/High-Resolution Melting analysis (HRM). Food Microbiology, 44, 128–135. [Google Scholar]
  5. Alagappan A, Bergquist PL, Ferrari BC. 2009. Development of a two-color fluorescence in situ hybridization technique for species-level identification of human-infectious Cryptosporidium spp. Applied and Environmental Microbiology, 75, 5996–5998. [CrossRef] [PubMed] [Google Scholar]
  6. Alarcón MA, Beltrán M, Cárdenas ML, Campos MC. 2005. Presence and viability of Giardia spp. and Cryptosporidium spp. in drinking water and wastewater in the high basin of Bogotá river. Biomedica, 25, 353–365. [CrossRef] [PubMed] [Google Scholar]
  7. Alonso JL, Amorós I, Guy RA. 2014. Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitology Research, 113, 2671–2678. [CrossRef] [PubMed] [Google Scholar]
  8. Alum A, Sbai B, Asaad H, Rubino JR, Khalid Ijaz M. 2012. ECC-RT-PCR: a new method to determine the viability and infectivity of Giardia cysts. International Journal of Infectious Diseases, 16, e350–e353. [Google Scholar]
  9. Amann RI, Ludwig W, Schleifer K-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169. [PubMed] [Google Scholar]
  10. Amorós I, Alonso JL, Cuesta G. 2010. Cryptosporidium oocysts and Giardia cysts on salad products irrigated with contaminated water. Journal of Food Protection, 73, 1138–1140. [CrossRef] [PubMed] [Google Scholar]
  11. Arrowood MJ, Xie L-T, Rieger K, Dunn J. 1996. Disinfection of Cryptosporidium parvum oocysts by pulsed light treatment evaluated in an in vitro cultivation model, 1996. Journal of Eukaryotic Microbiology, 43, 88S–88S. [Google Scholar]
  12. Aubert D, Villena I. 2009. Detection of Toxoplasma gondii oocysts in water: proposition of a strategy and evaluation in Champagne-Ardenne Region, France. Memórias do Instituto Oswaldo Cruz, 104, 290–295. [CrossRef] [Google Scholar]
  13. Baeumner AJ, Humiston MC, Montagna RA, Durst RA. 2001. Detection of viable oocysts of Cryptosporidium parvum following nucleic acid sequence based amplification. Analytical Chemistry, 73, 1176–1180. [CrossRef] [PubMed] [Google Scholar]
  14. Baishanbo A, Gargala G, Delaunay A, François A, Ballet J-J., Favennec L. 2005. Infectivity of Cryptosporidium hominis and Cryptosporidium parvum genotype 2 isolates in immunosuppressed mongolian gerbils. Infection and Immunity, 73, 5252–5255. [CrossRef] [PubMed] [Google Scholar]
  15. Bajszár G, Dekonenko A. 2010. Stress-induced hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants. Applied and Environmental Microbiology, 76, 1732–1739. [CrossRef] [PubMed] [Google Scholar]
  16. Baldursson S, Karanis P. 2011. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks − An update 2004–2010. Water Research, 45, 6603–6614. [CrossRef] [Google Scholar]
  17. Baque RH, Gilliam AO, Robles RD, Jakubowski W, Slifko TR. 2011. A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters. Water Research, 45, 3175–3184. [CrossRef] [PubMed] [Google Scholar]
  18. Belosevic M, Faubert GM, MacLean JD, Law C, Croll NA. 1983. Giardia lamblia infections in Mongolian gerbils: an animal model. Journal of Infectious Diseases, 147, 222–226. [CrossRef] [Google Scholar]
  19. Belosevic M, Guy RA, Taghi-Kilani R, Neumann NF, Gyürék LL, Liyanage LRJ, Millard PJ, Finch GR. 1997. Nucleic acid stains as indicators of Cryptosporidium parvum oocyst viability. International Journal for Parasitology, 27, 787–798. [CrossRef] [PubMed] [Google Scholar]
  20. Belosevic M, Guy RA, Taghi-Kilani R, Neumann NF. 1997. Vital dye staining of Giardia and Cryptosporidium. American Water Works Association, Denver, Co. [Google Scholar]
  21. Benamrouz S, Guyot K, Gazzola S, Mouray A, Chassat T, Delaire B, Chabé M, Gosset P, Viscogliosi E, Dei-Cas E, Creusy C, Conseil V, Certad G. 2012. Cryptosporidium parvum infection in SCID mice infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer. PLOS ONE, 7, e51232. [CrossRef] [PubMed] [Google Scholar]
  22. Benedict KM, Reses H, Vigar M, Roth DM, Roberts VA, Mattioli M, Cooley LA, Hilborn ED, Wade TJ, Fullerton KE, Yoder JS, Hill VR. 2017. Surveillance for waterborne disease outbreaks associated with drinking water − United States, 2013-2014. Morbidity and Mortality Weekly Report, 66, 1216–1221. [CrossRef] [Google Scholar]
  23. Bénéré E, Van Assche T, Van Ginneken C, Peulen O, Cos P, Maes L. 2012. Intestinal growth and pathology of Giardia duodenalis assemblage subtype A(I), A(II), B and E in the gerbil model. Parasitology, 139, 424–433. [CrossRef] [PubMed] [Google Scholar]
  24. Bertrand I, Maux M, Helmi K, Hoffmann L, Schwartzbrod J, Cauchie H-M. 2009. Quantification of Giardia transcripts during in vitro excystation: interest for the estimation of cyst viability. Water Research, 43, 2728–2738. [CrossRef] [PubMed] [Google Scholar]
  25. Bingham AK, Jarroll EL Jr, Meyer EA, Radulescu S. 1979. Giardia sp.: physical factors of excystation in vitro, and excystation vs eosin exclusion as determinants of viability. Experimental Parasitology, 47: 284–91. [CrossRef] [PubMed] [Google Scholar]
  26. Bingham AK, Meyer EA. 1979. Giardia excystation can be induced in vitro in acidic solutions. Nature, 277, 301–302. [Google Scholar]
  27. Biswas K, Craik S, Smith DW, Belosevic M. 2003. Synergistic inactivation of Cryptosporidium parvum using ozone followed by free chlorine in natural water. Water Research, 37, 4737–4747. [CrossRef] [PubMed] [Google Scholar]
  28. Biswas K, Craik S, Smith DW, Belosevic M. 2005. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters. Water Research, 39, 3167–3176. [CrossRef] [PubMed] [Google Scholar]
  29. Black EK, Finch GR, Taghi-Kilani R, Belosevic M. 1996. Comparison of assays for Cryptosporidium parvum oocysts viability after chemical disinfection. FEMS Microbiology Letters, 135, 187–189. [CrossRef] [PubMed] [Google Scholar]
  30. Bolton PH, Kearns DR. 1978. Spectroscopic properties of ethidium monoazide: a fluorescent photoaffinity label for nucleic acids. Nucleic Acids Research, 5, 4891–4903. [CrossRef] [PubMed] [Google Scholar]
  31. Boyer K, Hill D, Mui E, Wroblewski K, Karrison T, Dubey JP, Sautter M, Noble AG, Withers S, Swisher C, Heydemann P, Hosten T, Babiarz J, Lee D, Meier P, McLeod R, Toxoplasmosis Study Group. 2011. Unrecognized ingestion of Toxoplasma gondii oocysts leads to congenital toxoplasmosis and causes epidemics in North America. Clinical Infectious Diseases, 53, 1081–1089. [Google Scholar]
  32. Brasseur P, Lemeteil D, Ballet JJ. 1988. Rat model for human cryptosporidiosis. Journal of Clinical Microbiology, 26, 1037–1039. [PubMed] [Google Scholar]
  33. Brescia CC, Griffin SM, Ware MW, Varughese EA, Egorov AI, Villegas EN. 2009. Cryptosporidium propidium monoazide-PCR, a molecular biology-based technique for genotyping of viable Cryptosporidium oocysts. Applied and Environmental Microbiology, 75, 6856–6863. [CrossRef] [PubMed] [Google Scholar]
  34. Bukhari Z, Marshall MM, Korich DG, Fricker CR, Smith HV, Rosen J, Clancy JL. 2000. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts. Applied and Environmental Microbiology, 66, 2972–2980. [CrossRef] [PubMed] [Google Scholar]
  35. Buraud M, Forget E, Favennec L, Bizet J, Gobert JG, Deluol AM. 1991. Sexual stage development of cryptosporidia in the Caco-2 cell line. Infection and Immunity, 59, 4610–4613. [PubMed] [Google Scholar]
  36. Campbell AT, Robertson LJ, Smith HV. 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Applied and Environmental Microbiology, 58, 3488–3493. [PubMed] [Google Scholar]
  37. Campbell AT, Wallis P. 2002. The effect of UV irradiation on human-derived Giardia lamblia cysts. Water Research, 36, 963–969. [CrossRef] [PubMed] [Google Scholar]
  38. Certad G, Ngouanesavanh T, Guyot K, Gantois N, Chassat T, Mouray A, Fleurisse L, Pinon A, Cailliez JC, Dei-Cas E, Creusy C. 2007. Cryptosporidium parvum, a potential cause of colic adenocarcinoma. Infectious Agents and Cancer, 2007, 2–22 [Google Scholar]
  39. Chaidez C, Soto M, Gortares P, Mena K. 2005. Occurrence of Cryptosporidium and Giardia in irrigation water and its impact on the fresh produce industry. International Journal of Environmental Health Research, 15, 339–345. [CrossRef] [PubMed] [Google Scholar]
  40. Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, Tanriverdi S, Tzipori S. 2006. Cryptosporidium hominis: experimental challenge of healthy adults. American Journal of Tropical Medicine and Hygiene, 75, 851–857. [Google Scholar]
  41. Chochillon C, Favennec L, Gobert JG, Savel J. 1990. Giardia intestinalis: étude des modalités de l’infestation du souriceau avant le sevrage. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, 184, 150–157. [Google Scholar]
  42. Collins MV, Flick GJ, Smith SA, Fayer R, Croonenberghs R, O’Keefe S, Lindsay DS. 2005. The effect of high-pressure processing on infectivity of Cryptosporidium parvum oocysts recovered from experimentally exposed eastern oysters (Crassostrea virginica). Journal of Eukaryotic Microbiology, 52, 500–504. [CrossRef] [Google Scholar]
  43. Collins MV, Flick GJ, Smith SA, Fayer R, Rubendall E, Lindsay DS. 2005. The effects of e-beam irradiation and microwave energy on eastern oysters (Crassostrea virginica) experimentally infected with Cryptosporidium parvum. Journal of Eukaryotic Microbiology, 52, 484–488. [CrossRef] [Google Scholar]
  44. Connelly JT, Nugen SR, Borejsza-Wysocki W, Durst RA, Montagna RA, Baeumner AJ. 2008. Human pathogenic Cryptosporidium species bioanalytical detection method with single oocyst detection capability. Analytical and Bioanalytical Chemistry, 391, 487–495. [CrossRef] [PubMed] [Google Scholar]
  45. Costa AO, Thomaz-Soccol V, Clara Paulino R, Alcântara de Castro E. 2009. Effect of vinegar on the viability of Giardia duodenalis cysts. International Journal of Food Microbiology, 128, 510–512. [Google Scholar]
  46. Craik SA, Weldon D, Finch GR, Bolton JR, Belosevic M. 2001. Inactivation of Cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation. Water Research, 35, 1387–1398. [CrossRef] [PubMed] [Google Scholar]
  47. Dalton C, Goater AD, Pethig R, Smith HV. 2001. Viability of Giardia intestinalis cysts and viability and sporulation state of Cyclospora cayetanensis oocysts determined by electrorotation. Applied and Environmental Microbiology, 67, 586–590. [CrossRef] [PubMed] [Google Scholar]
  48. Deere D, Vesey G, Ashbolt N, Davies KA, Williams KL, Veal D. 1998. Evaluation of fluorochromes for flow cytometric detection of Cryptosporidium parvum oocysts labelled by fluorescent in situ hybridization. Letters in Applied Microbiology, 27, 352–356. [CrossRef] [PubMed] [Google Scholar]
  49. Delaunay A, Gargala G, Li X, Favennec L, Ballet JJ. 2000. Quantitative flow cytometric evaluation of maximal Cryptosporidium parvum oocyst infectivity in a neonate mouse model. Applied and Environmental Microbiology, 66, 4315–4317. [CrossRef] [PubMed] [Google Scholar]
  50. DeSilva MB, Schafer S, Kendall Scott M, Robinson B, Hills A, Buser GL, Salis K, Gargano J, Yoder J, Hill V, Buser GL, Salis K, Gargano J, Yoder J, Hill V, Xiao L, Roellig D, Hedberg K. 2016. Communitywide cryptosporidiosis outbreak associated with a surface water-supplied municipal water system-Baker City, Oregon, 2013. Epidemiology and Infection, 144, 274–284. [Google Scholar]
  51. Di Giovanni GD, Lechevallier MW. 2005. Quantitative-PCR assessment of Cryptosporidium parvum cell culture infection. Applied and Environmental Microbiology, 71, 1495–1500. [CrossRef] [PubMed] [Google Scholar]
  52. Dibao-Dina A, Follet J, Ibrahim M, Vlandas A, Senez V. 2015. Electrical impedance sensor for quantitative monitoring of infection processes on HCT-8 cells by the waterborne parasite Cryptosporidium. Biosensors and Bioelectronics, 66: 69–76. [CrossRef] [Google Scholar]
  53. Dubey JP 1998. Toxoplasma gondii oocyst survival under defined temperatures. Journal of Parasitology, 84, 862–865. [Google Scholar]
  54. Dubey JP, Ferreira LR, Martins J, McLeod R. 2012. Oral oocyst-induced mouse model of toxoplasmosis: Effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality. Parasitology, 139, 1–13. [CrossRef] [PubMed] [Google Scholar]
  55. Dubey JP, Jenkins MC, Thayer DW, Kwok OCH, Shen SK. 1996. Killing of Toxoplasma gondii oocysts by irradiation and protective immunity induced by vaccination with irradiated oocysts. Journal of Parasitology, 82, 724–727. [CrossRef] [Google Scholar]
  56. Dubey JP. 2009. Toxoplasmosis of animals and humans. CRC Press, Inc., Boca Raton. [Google Scholar]
  57. Dubey JP. 2010. Toxoplasmosis of animals and humans, second ed. CRC Press, Boca Raton. (FL, USA). [Google Scholar]
  58. Dumètre A, Dardé ML. 2003. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews, 27, 651–661. [CrossRef] [PubMed] [Google Scholar]
  59. Dumètre A, Le Bras C, Baffet M, Meneceur P, Dubey J-P., Derouin F, Duguet JP, Joyeux M, Moulin L. 2008. Effects of ozone and ultraviolet radiation treatments on the infectivity of Toxoplasma gondii oocysts. Veterinary Parasitology, 153, 209–213. [CrossRef] [PubMed] [Google Scholar]
  60. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal 2017, 15:5077. [Google Scholar]
  61. Efstratiou A, Ongerth JE, Karanis P. 2017. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks − An update 2011-2016. Water Research, 144, 14–22. [CrossRef] [PubMed] [Google Scholar]
  62. El Zawawy LA, El-Said D, Ali SM, Fathy FM. 2010. Disinfection efficacy of sodium dichloroisocyanurate (NADCC) against common food-borne intestinal protozoa. Journal of the Egyptian Society of Parasitology, 40:165–168. [Google Scholar]
  63. Esmerini PO, Gennari SM, Pena HFJ. 2010. Analysis of marine bivalve shellfish from the fish market in Santos city, São Paulo state, Brazil, for Toxoplasma gondii. Veterinary Parasitology, 170, 8–13. [CrossRef] [PubMed] [Google Scholar]
  64. Ethelberg S, Lisby M, Vestergaard LS, Enemark HL, Olsen KE, Stensvold CR, Nielsen HV, Porsbo LJ, Plesner AM, Mølbak K. 2009. A foodborne outbreak of Cryptosporidium hominis infection. Epidemiology & Infection, 137, 348–356. [CrossRef] [Google Scholar]
  65. FAO/OMS. 1999. Principles and guidelines for the conduct of microbiological risk assessment. Codex Alimentarius Commission, CAC/GL 30–1999. [Google Scholar]
  66. Fayer R, Leek RG. 1984. The effects of reducing conditions, medium, pH, temperature, and time on in vitro excystation of Cryptosporidium. Journal of Protozoology, 31, 567–569. [CrossRef] [Google Scholar]
  67. Fayer R, Lewis EJ, Trout JM, Graczyk TK, Jenkins MC, Higgins J, Xiao L, Lal AA. 1999. Cryptosporidium parvum in oysters from commercial harvesting sites in the Chesapeake Bay. Emerging Infectious Diseases, 5, 706–710. [CrossRef] [PubMed] [Google Scholar]
  68. Fayer R, Trout JM, Jenkins MC. 1998. Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. Journal of Parasitology, 84, 1165–1169. [CrossRef] [Google Scholar]
  69. Fayer R, Trout JM, Lewis EJ, Santin M, Zhou L, Lal AA, Xiao L. 2003. Contamination of Atlantic coast commercial shellfish with Cryptosporidium. Parasitology Research, 89, 141–145. [CrossRef] [PubMed] [Google Scholar]
  70. Fayer R, Trout JM, Lewis EJ, Xiao L, Lal AA, Jenkins MC, Graczyk TK. 2002. Temporal variability of Cryptosporidium in the Chesapeake Bay. Parasitology Research, 88, 998–1003. [CrossRef] [PubMed] [Google Scholar]
  71. FayerR, Graczyk TK, Lewis EJ, Trout JM, Farley CA. 1998. Survival of infectious Cryptosporidium parvum oocysts in seawater and eastern oysters (Crassostrea virginica) in the Chesapeake Bay. Applied and Environmental Microbiology, 64, 1070–1074. [Google Scholar]
  72. Figgatt M, Mergen K, Kimelstein D, Mahoney DM, Newman A, Nicholas D, Ricupero K, Cafiero T, Corry D, Ade J, Kurpiel P, Madison-Antenucci S, Anand M. 2017. Giardiasis outbreak associated with asymptomatic food handlers in New York State, 2015. Journal of Food Protection, 12, 837–841. [CrossRef] [Google Scholar]
  73. Finch GR, Black EK, Gyürék L, Belosevic M. 1993. Ozone inactivation of Cryptosporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity. Applied and Environmental Microbiology, 59, 4203–4210. [PubMed] [Google Scholar]
  74. Finch GR, Black EK, Labatiuk CW, Gyürék L, Belosevic M. 1993. Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone. Applied and Environmental Microbiology, 59, 3674–3680. [PubMed] [Google Scholar]
  75. Fittipaldi M, Nocker A, Codony F. 2012. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods, 91, 276–289. [CrossRef] [PubMed] [Google Scholar]
  76. Fontaine M, Guillot E. 2003. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. FEMS Microbiology Letters, 226, 237–243. [CrossRef] [PubMed] [Google Scholar]
  77. Fontán-Sainz M, Gómez-Couso H, Fernández-Ibáñez P, Ares-Mazás E. 2012. Evaluation of the solar water disinfection process (SODIS) against Cryptosporidium parvum using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). American Journal of Tropical Medicine and Hygiene, 86, 223–228. [CrossRef] [Google Scholar]
  78. Freire-Santos F, Gómez-Couso H, Ortega-Iñarrea MR, Castro-Hermida JA, Oteiza-López AM, García-Martín O, Ares-Mazás ME. 2002. Survival of Cryptosporidium parvum oocysts recovered from experimentally contaminated oysters (Ostrea edulis) and clams (Tapes decussatus). Parasitology Research, 88, 130–133. [CrossRef] [PubMed] [Google Scholar]
  79. Freyre A, Falcón J. 2004. Massive excystation of Toxoplasma gondii sporozoites. Experimental Parasitology, 107: 72–7. [CrossRef] [PubMed] [Google Scholar]
  80. Füchslin HP, Kötzsch S, Egli T. 2012. Cryptosporidium spp. in drinking water. Samples from rural sites in Switzerland. Swiss Medical Weekly, 142, w13683. [PubMed] [Google Scholar]
  81. Garcés-Sanchez G, Wilderer PA, Horn H, Munch J-C., Lebuhn M. 2013. Assessment of the viability of Cryptosporidium parvum oocysts with the induction ratio of hsp70 mRNA production in manure. Journal of Microbiological Methods, 94, 280–289. [CrossRef] [PubMed] [Google Scholar]
  82. Garcia A, Yanko W, Batzer G, Widmer G. 2002. Giardia cysts in tertiary-treated wastewater effluents: are they infective? Water Environment Research, 74, 541–544. [CrossRef] [Google Scholar]
  83. Garvey M, Farrell H, Cormican M, Rowan N. 2010. Investigations of the relationship between use of in vitro cell culture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline. Journal of Microbiological Methods, 80, 267–273. [CrossRef] [PubMed] [Google Scholar]
  84. Garvey M, Stocca A, Rowan N. 2014. Development of a combined in vitro cell culture − quantitative PCR assay for evaluating the disinfection performance of pulsed light for treating the waterborne enteroparasite Giardia lamblia. Experimental Parasitology, 144, 6–13. [CrossRef] [PubMed] [Google Scholar]
  85. Gennaccaro AL, McLaughlin MR, Quintero-Betancourt W, Huffman DE, Rose JB. 2003. Infectious Cryptosporidium parvum oocysts in final reclaimed effluent. Applied and Environmental Microbiology, 69, 4983–4984. [CrossRef] [PubMed] [Google Scholar]
  86. Goater AD, Burt JPH, Pethig R. 1997. A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of Cryptosporidium. Journal of Physics D: Applied Physics, 30, L65. [Google Scholar]
  87. Goater AD, Pethig R. 1999. Electrorotation and dielectrophoresis. Parasitology, 117, 177–189. [Google Scholar]
  88. Gomez-Bautista M, Ortega-Mora LM, Tabares E, Lopez-Rodas V, Costas E. 2000. Detection of infectious Cryptosporidium parvum oocysts in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule). Applied and Environmental Microbiology, 66, 1866–1870. [CrossRef] [PubMed] [Google Scholar]
  89. Gómez-Couso H, Fontán-Sainz M, Fernández-Ibáñez P, Ares-Mazás E. 2012. Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2. 5L static solar reactors fitted with compound parabolic concentrators (CPCs). Acta Tropica, 124, 235–242. [CrossRef] [PubMed] [Google Scholar]
  90. Gómez-Couso H, Freire-Santos F, Martínez-Urtaza J, García-Martín O, Ares-Mazás ME. 2003. Contamination of bivalve molluscs by Cryptosporidium oocysts: the need for new quality control standards. International Journal of Food Microbiology, 87, 97–105. [CrossRef] [PubMed] [Google Scholar]
  91. Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E. 2006. Cooking mussels (Mytilus galloprovincialis) by steam does not destroy the infectivity of Cryptosporidium parvum. Journal of Food Protection, 69, 948–950. [CrossRef] [PubMed] [Google Scholar]
  92. Graczyk TK, Grimes BH, Knight R, Da Silva AJ, Pieniazek NJ, Veal DA. 2003. Detection of Cryptosporidium parvum and Giardia lamblia carried by synanthropic flies by combined fluorescent in situ hybridization and a monoclonal antibody. American Journal of Tropical Medicine and Hygiene, 68, 228–232. [Google Scholar]
  93. Graczyk TK, Lewis EJ, Glass G, Dasilva AJ, Tamang L, Girouard AS, Curriero FC. 2007. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay. Parasitology Research, 100, 247–253. [CrossRef] [PubMed] [Google Scholar]
  94. Griffiths JK, Theodos C, Paris M, Tzipori S. 1998. The gamma interferon gene knockout mouse: a highly sensitive model for evaluation of therapeutic agents against Cryptosporidium parvum. Journal of Clinical Microbiology, 36, 2503–2508. [PubMed] [Google Scholar]
  95. Guzman-Herrador B, Carlander A, Ethelberg S, Freiesleben de Blasio B, Kuusi M, Lund V, Löfdahl M, MacDonald E, Nichols G, Schönning C, Sudre B, Trönnberg L, Vold L, Semenza J C, Nygård K. 2015. Waterborne outbreaks in the Nordic countries, 1998 to 2012. Euro Surveillance, 20:pii = 21160. [Google Scholar]
  96. Habtewold T, Groom Z, Duchateau L, Christophides GK. 2015. Detection of viable Plasmodium ookinetes in the midguts of Anopheles coluzzi using PMA-qrtPCR. Parasites & Vectors, 8, 455. [CrossRef] [PubMed] [Google Scholar]
  97. Hallier-Soulier S, Guillot E. 2003. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum. Environmental Microbiology, 5, 592–598. [CrossRef] [PubMed] [Google Scholar]
  98. Hanes DE, Worobo RW, Orlandi PA, Burr DH, Miliotis MD, Robl MG, Bier JW, Arrowood MJ, Churey JJ, Jackson GJ. 2002. Inactivation of Cryptosporidium parvum oocysts in fresh apple cider by UV irradiation. Applied and Environmental Microbiology, 68, 4168–4172. [CrossRef] [PubMed] [Google Scholar]
  99. Harp JA, Fayer R, Pesch BA, Jackson GJ. 1996. Effect of pasteurization on infectivity of Cryptosporidium parvum oocysts in water and milk. Applied and Environmental Microbiology, 62, 2866–2868. [PubMed] [Google Scholar]
  100. Hautus MA, Kortbeek LM, Vetter JC, Laarman JJ. 1988. In vitro excystation and subsequent axenic growth of Giardia lamblia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 82, 858–861. [CrossRef] [PubMed] [Google Scholar]
  101. Healey MC, Yang S, Du C, Liao SF. 1997. Bovine fallopian tube epithelial cells, adult C57BL/6 mice, and non-neonatal pigs as models for cryptosporidiosis. Journal of Eukaryotic Microbiology, 44, 64S–65S. [CrossRef] [Google Scholar]
  102. Hijjawi NS, Meloni BP, Ng’anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RCA. 2004. Complete development of Cryptosporidium parvum in host cell-free culture. International Journal for Parasitology, 34, 769–777. [CrossRef] [PubMed] [Google Scholar]
  103. Hikosaka K, Satoh M, Koyama Y, Nakai Y. 2005. Quantification of the infectivity of Cryptosporidium parvum by monitoring the oocyst discharge from SCID mice. Veterinary Parasitology, 134, 173–176. [CrossRef] [PubMed] [Google Scholar]
  104. Hohweyer J, Cazeaux C, Travaillé E, Languet E, Dumètre A, Aubert D, Terryn C, Dubey JP, Azas N, Houssin M, Favennec L, Villena I, La Carbona S. 2016. Simultaneous detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and their persistence on basil leaves. Food Microbiology, 57, 36–44. [CrossRef] [PubMed] [Google Scholar]
  105. Hong S, Kim K, Yoon S, Park WY, Sim S, Yu JR. 2014. Detection of Cryptosporidium parvum in environmental soil and vegetables. Journal of Korean Medical Science, 29, 1367–1371. [CrossRef] [PubMed] [Google Scholar]
  106. Hønsvall BK, Robertson LJ, 2017. From research lab to standard environmental analysis tool: will NASBA make the leap? Water Research, 109, 389–397. [CrossRef] [PubMed] [Google Scholar]
  107. Hønsvall BK, Robertson LJ. 2017. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Experimental Parasitology, 172, 61–67. [CrossRef] [PubMed] [Google Scholar]
  108. Hou L, Li X, Dunbar L, Moeller R, Palermo B, Atwil ER. 2004. Neonatal-mouse infectivity of intact Cryptosporidium parvum oocysts isolated after optimized in vitro excystation. Applied and Environmental Microbiology, 70, 642–646. [CrossRef] [PubMed] [Google Scholar]
  109. Huffman DE, Gennaccaro AL, Berg TL, Batzer G, Widmer G. 2006. Detection of infectious parasites in reclaimed water. Water Environment Research, 79, 2297–2302. [CrossRef] [Google Scholar]
  110. Isaac-Renton J, Bowie WR, King A, Irwin GS, Ong CS, Fung CP, Shokeir MO, Dubey JP. 1998. Detection of Toxoplasma gondii oocysts in drinking water. Applied and Environmental Microbiology, 64, 2278–2280. [PubMed] [Google Scholar]
  111. Isaac-Renton J, Moorehead W, Ross A. 1996. Longitudinal studies of Giardia contamination in two community drinking water supplies: cyst levels, parasite viability, and health impact. Applied and Environmental Microbiology, 62, 47–54. [PubMed] [Google Scholar]
  112. ISO 18744:2016. Microbiology of the food chain − Detection and enumeration of Cryptosporidium and Giardia in fresh leafy green vegetables and berry fruits. [Google Scholar]
  113. Iturriaga R, Zhang S, Sonek GJ, Stibbs H. 2001. Detection of respiratory enzyme activity in Giardia cysts and Cryptosporidium oocysts using redox dyes and immunofluorescence techniques. Journal of Microbiological Methods, 46, 19–28. [CrossRef] [PubMed] [Google Scholar]
  114. Jenkins M, Trout J, Abrahamsen MS, Lancto CA, Higgins J, Fayer R. 2000. Estimating viability of Cryptosporidium parvum oocysts using reverse transcriptase polymerase chain reaction (RT-PCR) directed at mRNA encoding amyloglucosidase. Journal of Microbiological Methods. 43, 97–106. [CrossRef] [PubMed] [Google Scholar]
  115. Jenkins M, Trout J, Higgins J, Dorsch M, Veal D, Fayer R. 2003. Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitology Research, 89, 1–5. [PubMed] [Google Scholar]
  116. Jenkins MB, Anguish LJ, Bowman DD, Walker MJ, Ghiorse WC. 1997. Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 63, 3844–3850. [PubMed] [Google Scholar]
  117. Johnson AM, Di Giovanni GD, Rochelle PA. 2012. Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. Applied and Environmental Microbiology, 78, 156–162. [CrossRef] [PubMed] [Google Scholar]
  118. Johnson AM, Linden K, Ciociola KM, De Leon R, Widmer G, Rochelle PA. 2005. UV inactivation of Cryptosporidium hominis as measured in cell culture. Applied and Environmental Microbiology, 71, 2800–2802. [CrossRef] [PubMed] [Google Scholar]
  119. Johnson LL. 1992. SCID mouse models of acute and relapsing chronic Toxoplasma gondii infections. Infection and Immunity, 60, 3719–3724. [PubMed] [Google Scholar]
  120. Jones JL, Dubey JP. 2010. Waterborne toxoplasmosis − Recent developments. Experimental Parasitology, 124, 10–25. [CrossRef] [PubMed] [Google Scholar]
  121. Kato S, Jenkins MB, Fogarty EA, Bowman DD. 2002. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil. Journal of Parasitology, 88, 718–722. [Google Scholar]
  122. Keegan AR, Fanok S, Monis PT, Saint CP. 2003. Cell culture-taqman PCR assay for evaluation of Cryptosporidium parvum disinfection. Applied and Environmental Microbiology, 69, 2505–2511. [CrossRef] [PubMed] [Google Scholar]
  123. King BJ, Hoefel D, Daminato DP, Fanok S, Monis PT. 2008. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters. Journal of Applied Microbiology, 104, 1311–1323. [CrossRef] [PubMed] [Google Scholar]
  124. King BJ, Keegan AR, Phillips R, Fanok S, Monis PT, 2012. Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity. Parasitology, 139, 1533–1546. [CrossRef] [PubMed] [Google Scholar]
  125. King BJ, Keegan AR, Robinson BS, Monis PT. 2011. Cryptosporidium cell culture infectivity assay design. Parasitology, 138, 671–681. [CrossRef] [PubMed] [Google Scholar]
  126. Kniel KE, Lindsay DS, Sumner SS, Hackney CR, Pierson MD, Dubey JP. 2002. Examination of attachment and survival of Toxoplasma gondii oocysts on raspberries and blueberries. Journal of Parasitology, 88, 790–793. [CrossRef] [Google Scholar]
  127. Kniel KE, Sumner SS, Lindsay DS, Hackney CR, Pierson MD, Zajac AM, Golden DA, Fayer R. 2003. Effect of organic acids and hydrogen peroxide on Cryptosporidium parvum viability in fruit juices. Journal of Food Protection, 66, 1650–1657. [CrossRef] [PubMed] [Google Scholar]
  128. Korich DG, Marshall MM, Smith HV, O’Grady J, Bukhari Z, Fricker CR, Rosen JP, Clancy JL. 2000. Inter-laboratory comparison of the CD-I neonatal mouse logistic dose-response model for Cryptosporidium parvum oocysts. Journal of Eukaryotic Microbiology, 47, 294–298. [CrossRef] [Google Scholar]
  129. Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR. 1990. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Applied and Environmental Microbiology, 56, 1423–1428. [PubMed] [Google Scholar]
  130. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AKM, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet, 382, 209–222. [Google Scholar]
  131. Le Goff L, Hubert B, Favennec L, Villena I, Ballet JJ, Agoulon A, Orange N, Gargala G. 2015. Pilot-scale pulsed UV light irradiation of experimentally infected raspberries suppresses Cryptosporidium parvum infectivity in immunocompetent suckling mice. Journal of Food Protection, 78, 2247–2252. [CrossRef] [PubMed] [Google Scholar]
  132. Lebbad M, Mattsson JG, Christensson B, Ljungström B, Backhans A, Andersson JO, Svärd SG. 2010. From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Veterinary Parasitology, 168, 231–239. [CrossRef] [PubMed] [Google Scholar]
  133. LeChevallier MW, Di Giovanni GD, Clancy JL, Bukhari Z, Bukhari S, Rosan JS, Sobrinho J, Frey MM. 2003. Comparison of method 1623 and cell culture-PCR for detection of Cryptosporidium spp in source waters. Applied and Environmental Microbiology, 69, 971–979. [CrossRef] [PubMed] [Google Scholar]
  134. Lee GC, Nam SH, Chae JC, Lee CH. 2009. Giardia duodenalis: improved detection of viable cysts by reverse transcription-PCR of heat shock-inducible hsp70 gene. Experimental Parasitology, 123, 377–380. [CrossRef] [PubMed] [Google Scholar]
  135. Lee S-U., Joung M, Ahn M-H., Huh S, Song H, Park W-Y., Yu J-R. 2008. CP2 gene as a useful viability marker for Cryptosporidium parvum. Parasitology Research, 102, 381–387. [CrossRef] [PubMed] [Google Scholar]
  136. Lélu M, Villena I, Dardé ML, Aubert D, Geers R, Dupuis E, Marnef F, Poulle ML, Gotteland C, Dumètre A, Gilot-Fromont E. 2012. Quantitative estimation of the viability of Toxoplasma gondii oocysts in soil. Applied and Environmental Microbiology, 78, 5127–5132. [CrossRef] [PubMed] [Google Scholar]
  137. Lemée V, Zaharia I, Nevez G, Rabodonirina M, Brasseur P, Ballet JJ, Favennec L. 2000. Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. Journal of Antimicrobial Chemotherapy, 46, 819–821. [CrossRef] [Google Scholar]
  138. Lemos V, Graczyk TK, Alves M, Lobo ML, Sousa MC, Antunes F, Matos O. 2005. Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies. Parasitology Research, 98, 48–53. [CrossRef] [PubMed] [Google Scholar]
  139. Li D, Craik SA, Smith DW, Belosevic M. 2007. Comparison of levels of inactivation of two isolates of Giardia lamblia cysts by UV light. Applied and Environmental Microbiology, 73, 2218–2223. [CrossRef] [PubMed] [Google Scholar]
  140. Li D, Craik SA, Smith DW, Belosevic M. 2009. Infectivity of Giardia lamblia cysts obtained from wastewater treated with ultraviolet light. Water Research, 43, 3137–3146. [Google Scholar]
  141. Li H, Gyürék LL, Finch GR, Smith DW, Belosevic M. 2001. Effect of temperature on ozone inactivation of Cryptosporidium parvum in oxidant demand-free phosphate buffer. Journal of Environmental Engineering, 127, 456–467. [CrossRef] [Google Scholar]
  142. Li X, Brasseur P, Agnamey P, Ballet JJ, Clemenceau C. 2004. Time and temperature effects on the viability and infectivity of Cryptosporidium parvum oocysts in chlorinated tap water. Archives of Environmental Health, 59, 462–466. [CrossRef] [PubMed] [Google Scholar]
  143. Li X, Guyot K, Dei-Cas E, Mallard JP, Ballet JJ, Brasseur P. 2006. Cryptosporidium oocysts in mussels (Mytilus edulis) from Normandy (France). International Journal of Food Microbiology, 108, 321–325. [PubMed] [Google Scholar]
  144. Liang Z, Keeley A. 2012. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples. Water Research, 46, 5941–5953. [CrossRef] [PubMed] [Google Scholar]
  145. Lindsay DS, Collins MV, Jordan CN, Flick GJ, Dubey JP. 2005. Effects of high pressure processing on infectivity of Toxoplasma gondii oocysts for mice. Journal of Parasitology, 91, 699–701. [CrossRef] [Google Scholar]
  146. Lindsay DS, Holliman D, Flick GJ, Goodwin DG, Mitchell SM, Dubey JP. 2008. Effects of high pressure processing on Toxoplasma gondii oocysts on raspberries. Journal of Parasitology, 94, 757–758. [CrossRef] [Google Scholar]
  147. Lonigro A, Pollice A, Spinelli R, Berrilli F, Di Cave D, D’Orazi C, Cavallo P, Brandonisio O. 2006. Giardia cysts and Cryptosporidium oocysts in membrane-filtered municipal wastewater used for irrigation. Applied and Environmental Microbiology, 72, 7916–7918. [CrossRef] [PubMed] [Google Scholar]
  148. Lorenzo-Lorenzo MJ, Ares-Mazas ME, Villacorta-Martinez de Maturana I, Duran-Oreiro D. 1993. Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. Journal of Parasitology, 79, 67–70. [Google Scholar]
  149. Ma J, Feng Y, Hu Y, Villegas EN, Xiao L. 2016. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. Journal of Water and Health, 14, 411–423. [CrossRef] [PubMed] [Google Scholar]
  150. Macarisin D, Santín M, Bauchan G, Fayer R. 2010. Infectivity of Cryptosporidium parvum oocysts after storage of experimentally contaminated apples. Journal of Food Protection, 73, 1824–1829. [CrossRef] [PubMed] [Google Scholar]
  151. Marchioro AA, Tiyo BT, Colli CM, de Souza CZ, Garcia JL, Gomes ML, Falavigna-Guilherme AL. 2016. First detection of Toxoplasma gondii DNA in the fresh leafs of vegetables in South America. Vector Borne and Zoonotic Diseases, 16, 624–626. [CrossRef] [Google Scholar]
  152. Matsubayashi M, Ando H, Kimata I, Nakagawa H, Furuya M, Tani H, Sasai K. 2010. Morphological changes and viability of Cryptosporidium parvum sporozoites after excystation in cell-free culture media. Parasitology, 137, 1861–1866. [CrossRef] [PubMed] [Google Scholar]
  153. McGrath JS, Quist J, Seddon JRT, Lai SCS, Lemay SG, Bridle HL. 2016. Deformability assessment of waterborne protozoa using a microfluidic-enabled force microscopy Probe. PLoS One 11, e0150438. [CrossRef] [PubMed] [Google Scholar]
  154. McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares- Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA. 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 101, 453–463. [Google Scholar]
  155. McKerr C, Adak GK, Nichols G, Gorton R, Chalmers RM, Kafatos G, Cosford P, Charlett A, Reacher M, Pollock KG, Alexander CL, Morton S. 2015. An outbreak of Cryptosporidium parvum across England & Scotland associated with consumption of fresh pre-cut salad leaves, May 2012. PLoS One, 10, e0125955. [CrossRef] [Google Scholar]
  156. Mead JR, Ilksoy N, You X, Belenkaya Y, Arrowood MJ, Fallon MT, Schinazi RF. 1994. Infection dynamics and clinical features of cryptosporidiosis in SCID mice. Infection and Immunity, 62, 1691–1695. [PubMed] [Google Scholar]
  157. Melicherová J, Mazourová V, Valigurová A. 2016. In vitro excystation of Cryptosporidium muris oocysts and viability of released sporozoites in different incubation media. Parasitology Research, 115, 1113–1121. [CrossRef] [PubMed] [Google Scholar]
  158. Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, McGuigan KG. 2005. Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water. Applied and Environmental Microbiology, 71, 1653–1654. [CrossRef] [PubMed] [Google Scholar]
  159. Miller CN, Jossé L, Brown I, Blakeman B, Povey J, Yiangou L, Price M, Cinatl J Jr, Xue WF, Michaelis M, Tsaousis AD. 2017. A cell culture platform for Cryptosporidium that enables long-term cultivation and new tools for the systematic investigation of its biology. doi: 10.1016/j.ijpara.2017.10.001 [Google Scholar]
  160. Moore AG, Vesey G, Champion A, Scandizzo P, Deere D, Veal D, Williams KL. 1998. Viable Cryptosporidium parvum oocysts exposed to chlorine or other oxidising conditions may lack identifying epitopes. International Journal of Parasitology, 28, 1205–1212. [CrossRef] [Google Scholar]
  161. Moreno Y, Moreno-Mesonero L, Amorós I, Pérez R, Morillo JA, Alonso JL. 2018. Multiple identification of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics. International Journal of Hygiene and Environmental Health, 221, 102–111. [CrossRef] [PubMed] [Google Scholar]
  162. Mtapuri-Zinyowera S, Midzi N, Muchaneta-Kubara CE, Simbini T, Mduluza T. 2009. Impact of solar radiation in disinfecting drinking water contaminated with Giardia duodenalis and Entamoeba histolytica/dispar at a point-of-use water treatment. Journal of Applied Microbiology, 106, 847–852. [CrossRef] [PubMed] [Google Scholar]
  163. Nam S, Lee G. 2010. A new duplex reverse transcription PCR for simultaneous detection of viable Cryptosporidium parvum oocysts and Giardia duodenalis cysts. Biomedical and Environmental Sciences, 23, 146–150. [CrossRef] [Google Scholar]
  164. Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. 2000. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of Microbiological Methods, 42, 97–114. [CrossRef] [PubMed] [Google Scholar]
  165. Neumann NF, Gyürek LL, Gammie L, Finch GR, Belosevic M. 2000. Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water. Applied and Environmental Microbiology, 66, 406–412. [CrossRef] [PubMed] [Google Scholar]
  166. Nichols RA, Paton CA, Smith HV. 2004. Survival of Cryptosporidium parvum oocysts after prolonged exposure to still natural mineral waters. Journal of Food Protection, 67, 517–523. [CrossRef] [PubMed] [Google Scholar]
  167. Nichols RAB, Connelly L, Sullivan CB, Smith HV. 2010. Identification of Cryptosporidium species and genotypes in Scottish raw and drinking waters during a one-year monitoring period. Applied and Environmental Microbiology, 76, 5977–5986. [CrossRef] [PubMed] [Google Scholar]
  168. Nocker A, Cheung C-Y., Camper AK. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods, 67, 310–320. [CrossRef] [PubMed] [Google Scholar]
  169. Novak SM, Sterling CR. 1991. Susceptibility dynamics in neonatal BALB/c mice infected with Cryptosporidium parvum. Journal of Protozoology, 38, 103S–104S. [Google Scholar]
  170. Okhuysen PC, Chappell CL, Crabb JH, Sterling CR, DuPont HL. 1999. Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. Journal of Infectious Diseases, 180, 1275–1281. [CrossRef] [Google Scholar]
  171. Opsteegh M, et al. 2016. Relationship between seroprevalence in the main livestock species and presence of Toxoplasma gondii in meat (GP/EFSA/BIOHAZ/2013/01): an extensive literature review. Final report. EFSA supporting publication 2016:EN-996, 294 pp. [Google Scholar]
  172. Oyane I, Furuta M, Stavarache CE, Hashiba K, Mukai S, Nakanishi JM, Kimata I, Maeda Y. 2005. Inactivation of Cryptosporidium parvum by ultrasonic irradiation. Environmental Science & Technology, 39, 7294–7298. [CrossRef] [PubMed] [Google Scholar]
  173. Paziewska-Harris A, Schoone G, Schallig HDFH. 2016. An easy ‘one tube’ method to estimate viability of Cryptosporidium oocysts using real-time qPCR. Parasitology Research, 115, 2873–2877. [CrossRef] [PubMed] [Google Scholar]
  174. Peng MM, Xiao L, Freeman AR, Arrowood MJ, Escalante AA, Weltman AC, Ong CSL, Mac Kenzie WR, Lal AA, Beard CB. 1997. Genetic polymorphism among Cryptosporidium parvum isolates: evidence of two distinct human transmission cycles. Emerging Infectious Diseases, 3, 567–573 [CrossRef] [Google Scholar]
  175. Pönka A, Kotilainen H, Rimhanen-Finne R, Hokkanen P, Hänninen ML, Kaarna A, Meri T, Kuusi M. 2009. A foodborne outbreak due to Cryptosporidium parvum in Helsinki, November 2008. Eurosurveillance, 14, pii: 19269. [Google Scholar]
  176. Quilez J, Sanchez-Acedo C, Avendaño C, del Cacho E, Lopez-Bernad F. 2005. Efficacy of two peroxygen-based disinfectants for inactivation of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 71, 2479–2483. [CrossRef] [PubMed] [Google Scholar]
  177. Rasmussen KR, Healey MC. 1992. Experimental Cryptosporidium parvum infections in immunosuppressed adult mice. Infection and Immunity, 60, 1648–1652. [PubMed] [Google Scholar]
  178. Reduker DW, Speer CA. 1985. Factors influencing excystation in Cryptosporidium oocysts from cattle. Journal of Parasitology. 71, 112–115. [CrossRef] [Google Scholar]
  179. Rehg JE, Hancock ML, Woodmansee DB. 1987. Characterization of cyclophosphamide-rat model of cryptosporidiosis. Infection and Immunity, 55, 2669–2674. [PubMed] [Google Scholar]
  180. Rendtorff RC. 1979. The experimental transmission of Giardia lamblia among volunteer subjects. Waterborne transmission of Giardiasis Proceeding of a Symposium, Cincinnati, USA. [Google Scholar]
  181. Rice E, Schaefer EW. 1981. Improved in vitro excystation procedure for Giardia lamblia. Journal of Clinical Microbiology, 14: 709–710. [PubMed] [Google Scholar]
  182. Robert-Gangneux F, Dardé ML. 2012. Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews, 25:264–96. [CrossRef] [PubMed] [Google Scholar]
  183. Robertson LJ, Campbell AT, Smith HV. 1992. Survival of Cryptosporidium parvum oocysts under various environmental pressures. Applied and Environmental Microbiology, 58, 3494–3500. [PubMed] [Google Scholar]
  184. Robertson LJ, Campbell AT, Smith HV. 1993. In vitro excystation of Cryptosporidium parvum. Parasitology, 106: 13–9. [CrossRef] [PubMed] [Google Scholar]
  185. Robertson LJ, Gjerde BK. 2007. Cryptosporidium oocysts: challenging adversaries? Trends in Parasitology, 23, 344–347. [CrossRef] [PubMed] [Google Scholar]
  186. Rochelle PA, Fallar D, Marshall MM, Montelone BA, Upton SJ, Woods K. 2004. Irreversible UV inactivation of Cryptosporidium spp. despite the presence of UV repair genes. Journal of Eukaryotic Microbiology, 51, 553–562. [CrossRef] [Google Scholar]
  187. Rochelle PA, Marshall MM, Mead JR, Johnson AM, Korish DG, Rosen JS, De Leon R. 2002. Comparison of in vitro cell culture and a mouse assay for measuring infectivity of Cryptosporidium parvum. Applied and Environmental Microbiology, 68, 3809–3817. [CrossRef] [PubMed] [Google Scholar]
  188. Rossi P, Pozio E, Besse MG, Gomez Morales MA, La Rosa G. 1990. Experimental cryptosporidiosis in hamsters. Journal of Clinical Microbiology, 28, 356–357. [Google Scholar]
  189. Rotman B, Papermaster BW. 1966. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proceedings of the National Academy of Sciences of the United States, 55, 134–141. [CrossRef] [Google Scholar]
  190. Schets FM, Engels GB, During M, De Roda Husman AM. 2005. Detection of infectious Cryptosporidium oocysts by cell culture immunofluorescence assay: applicability to environmental samples. Applied and Environmental Microbiology, 71, 6793–6798. [Google Scholar]
  191. Schets FM, van den Berg HHJL, Engels GB, Lodder WJ, de Roda Husman AM. 2007. Cryptosporidium and Giardia in commercial and non-commercial oysters (Crassostrea gigas) and water from the Oosterschelde, the Netherlands. International Journal of Food Microbiology, 113, 189–194. [Google Scholar]
  192. Schupp DG, Erlandsen SL. 1987. A new method to determine Giardia cyst viability: correlation of fluorescein diacetate and propidium iodide staining with animal infectivity. Applied and Environmental Microbiology, 53, 704–707. [PubMed] [Google Scholar]
  193. Shahiduzzaman M, Dyachenko V, Keidel J, Schmäschke R, Daugschies A. 2010. Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Veterinary Parasitology, 167, 43–49. [CrossRef] [PubMed] [Google Scholar]
  194. Sherwood D, Angus KW, Snodgrass DR, Tzipori S. 1982. Experimental cryptosporidiosis in laboratory mice. Infection and Immunity, 38, 471–475. [PubMed] [Google Scholar]
  195. Shin GA, Linden KG, Arrowood MJ, Sobsey MD. 2001. Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 67, 3029–3032. [CrossRef] [PubMed] [Google Scholar]
  196. Shin GA, Linden KG, Faubert G. 2009. Inactivation of Giardia lamblia cysts by polychromatic UV. Letters in Applied Microbiology, 48, 790–792. [PubMed] [Google Scholar]
  197. Slifko TR, Friedman D, Rose JB, Jakubowski W. 1997. An in vitro method for detecting infectious Cryptosporidium oocysts with cell culture. Applied and Environmental Microbiology, 63, 3669–3675. [PubMed] [Google Scholar]
  198. Slifko TR, Huffman DE, Dussert B, Owens JH, Jakubowski W, Haas CN, Rose JB. 2002. Comparison of tissue culture and animal models for assessment of Cryptosporidium parvum infection. Experimental Parasitology, 101, 97–106. [CrossRef] [PubMed] [Google Scholar]
  199. Smith AL, Smith HV. 1989. A comparison of fluorescein diacetate and propidium iodide staining and in vitro excystation for determining Giardia intestinalis cyst viability. Parasitology, 99, 329–331. [CrossRef] [PubMed] [Google Scholar]
  200. Smith JJ, Gunasekera TS, Barardi CRM, Veal D, Vesey G. 2004. Determination of Cryptosporidium parvum oocyst viability by fluorescence in situ hybridization using a ribosomal RNA-directed probe. Journal of Applied Microbiology, 96, 409–417. [CrossRef] [PubMed] [Google Scholar]
  201. Smith JL. 1993. Documented Outbreaks of Toxoplasmosis: Transmission of Toxoplasma gondii to Human. Journal of Food Protection, 56, 630–639. [CrossRef] [PubMed] [Google Scholar]
  202. Strober W. 2015. Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 111: A3.B.1-3. [Google Scholar]
  203. Sundermann CA, Estridge BH. 2009. Inactivation of Giardia lamblia cysts by cobalt-60 irradiation. Journal of Parasitology, 96, 425–428. [CrossRef] [Google Scholar]
  204. Teunis PF, Chappell CL, Okhuysen PC. 2002. Cryptosporidium dose response studies: variation between isolates. Risk Analysis, 22, 175–183. [CrossRef] [Google Scholar]
  205. Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS. 2005. Cryptosporidium and cryptosporidiosis. Advances in Parasitology, 59, 77–158. [CrossRef] [PubMed] [Google Scholar]
  206. Thompson RCA. 2004. The zoonotic significance and molecular epidemiology of Giardia and Giardiasis. Veterinary Parasitology, 126, 15–35. [CrossRef] [PubMed] [Google Scholar]
  207. Thurston-Enriquez JA, Watt P, Dowd SE, Enriquez R, Pepper IL, Gerba CP. 2002. Detection of protozoan parasites and microsporidia in irrigation waters used for crop production. Journal of Food Protection, 65, 378–382. [CrossRef] [PubMed] [Google Scholar]
  208. Tomonaga T, Rai SK, Uga S 2016. Differentiation between viable and dead Cryptosporidium oocysts using fluorochrome staining. Kobe Journal of Medical Sciences, 61:E138–E144. [Google Scholar]
  209. Travaillé E, La Carbona S, Gargala G, Aubert D, Guyot K, Dumètre A, Villena I, Houssin M. 2016. Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control, 59, 359–365. [Google Scholar]
  210. Tsushima Y, Karanis P, Kamada T, Xuan X, Makala LH, Tohya Y, Akashi H, Nagasawa H. 2003. Viability and infectivity of Cryptosporidium parvum oocysts detected in river water in Hokkaido, Japan. Journal of Veterinary Medical Science, 65, 585–589. [CrossRef] [Google Scholar]
  211. Tysnes KR, Robertson LJ. 2016. Establishment of canine-derived Giardia duodenalis isolates in culture. Journal of Parasitology, 102:342–8. [CrossRef] [Google Scholar]
  212. Tzipori S, Rand W, Theodos C. 1995. Evaluation of a two-phase scid mouse model preconditioned with anti-interferon-gamma monoclonal antibody for drug testing against Cryptosporidium parvum. Journal of Infectious Diseases, 172, 1160–1164. [CrossRef] [Google Scholar]
  213. Upton SJ, Tilley M, Brillhart DB. 1995. Effects of select medium supplements on in vitro development of Cryptosporidium parvum in HCT-8 cells. Journal of Clinical Microbiology, 33, 371–375. [PubMed] [Google Scholar]
  214. Upton SJ, Tilley M, Brillhart DB. 1994. Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines. FEMS Microbiology Letters, 118, 233–236. [CrossRef] [PubMed] [Google Scholar]
  215. Utaaker KS, Skjerve E, Robertson LJ. 2017. Keeping it cool: Survival of Giardia cysts and Cryptosporidium oocysts on lettuce leaves. International Journal of Food Microbiology, 255, 51–57. [CrossRef] [PubMed] [Google Scholar]
  216. Varughese EA, Bennett-Stamper CL, Wymer LJ, Yadav JS. 2014. A new in vitro model using small intestinal epithelial cells to enhance infection of Cryptosporidium parvum. Journal of Microbiological Methods, 106, 47–54. [CrossRef] [PubMed] [Google Scholar]
  217. Vesey G, Ashbolt N, Fricker EJ, Deere D, Williams KL, Veal DA, Dorsch M. 1998. The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labelling of viable Cryptosporidium parvum oocysts. Journal of Applied Microbiology, 85, 429–440. [CrossRef] [PubMed] [Google Scholar]
  218. Villegas EN, Augustine SAJ, Villegas LF, Ware MW, See MJ, Lindquist HDA, Schaefer III FW, Dubey JP. 2010. Using quantitative reverse transcriptase PCR and cell culture plaque assays to determine resistance of Toxoplasma gondii oocysts to chemical sanitizers. Journal of Microbiological Methods, 81, 219–225. [CrossRef] [Google Scholar]
  219. Villena I, Aubert D, Gomis P, Ferté H, Inglard J-C., Denis-Bisiaux H, Dondon J-M., Pisano E, Ortis N, Pinon J-M. 2004. Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Applied and Environmental Microbiology, 70, 4035–4039. [Google Scholar]
  220. Wainwright KE, Lagunas-Solar M, Miller MA, Barr BC, Gardner IA, Pina C, Melli AC, Packham AE, Zeng N, Truong T, Conrad PA. 2007. Physical inactivation of Toxoplasma gondii oocysts in water. Applied and Environmental Microbiology, 73, 5663–5666. [CrossRef] [PubMed] [Google Scholar]
  221. Wainwright KE, Lagunas-Solar M, Miller MA, Barr BC, Melli AC, Packham AE, Zeng N, Truong T, Conrad PA. 2010. Radiofrequency-induced thermal inactivation of Toxoplasma gondii oocysts in water. Zoonoses Public Health, 57, 74–81. [CrossRef] [PubMed] [Google Scholar]
  222. Wainwright KE, Miller MA, Barr BC, Gardner IA, Melli AC, Essert T, Packham AE, Truong T, Lagunas-Solar M, Conrad PA. 2007. Chemical inactivation of Toxoplasma gondii oocysts in water. Journal of Parasitology, 93, 925–931. [CrossRef] [Google Scholar]
  223. Ware MW, Augustine SAJ, Erisman DO, See MJ, Wymer L, Hayes SL, Dubey JP, Villegas EN. 2010. Determining UV inactivation of Toxoplasma gondii oocysts by using cell culture and a mouse bioassay. Applied and Environmental Microbiology, 76, 5140–5147. [CrossRef] [PubMed] [Google Scholar]
  224. Widmer G, Akiyoshi D, Buckholt MA, Feng X, Rich SM, Deary KM, Bowman CA, Xu P, Wang Y, Wang X, Buck GA, Tzipori S. 2000. Animal propagation and genomic survey of a genotype 1 isolate of Cryptosporidium parvum. Molecular and Biochemical Parasitology, 108:187–197. [CrossRef] [PubMed] [Google Scholar]
  225. Widmer G, Corey EA, Stein B, Griffiths JK, Tzipori S. 2000. Host cell apoptosis impairs Cryptosporidium parvum development in vitro. Journal of Parasitology, 86:922–928. [CrossRef] [Google Scholar]
  226. Widmer G, Orbacz EA, Tzipori S. 1999. β-Tubulin mRNA as a marker of Cryptosporidium parvum oocyst viability. Applied and Environmental Microbiology, 65, 1584–1588. [PubMed] [Google Scholar]
  227. Xunde LI, Brasseur P. 2000. A NMRI suckling mouse model for the evaluation of infectivity of Cryptosporidium parvum oocysts. Chinese Journal of Parasitology and Parasitic Diseases, 18, 94–96. [Google Scholar]
  228. Yang S, Benson SK, Du C, Healey MC. 2000. Infection of immunosuppressed C57BL/6N adult mice with a single oocyst of Cryptosporidium parvum. Journal of Parasitology, 86, 884–887. [CrossRef] [Google Scholar]
  229. Yielding LW, Yielding KL, Donoghue JE. 1984. Ethidium binding to deoxyribonucleic acid: spectrophotometric analysis of analogs with amino, azido, and hydrogen substituents. Biopolymers, 23, 83–110. [CrossRef] [PubMed] [Google Scholar]
  230. You X, Mead JR. 1988. Characterization of experimental Cryptosporidium parvum infection in IFN-gamma knockout mice. Parasitology, 117, 525–531. [Google Scholar]
  231. Zeng D, Chen Z, Jiang Y, Xue F, Li B. 2016. Advances and Challenges in Viability Detection of Foodborne Pathogens. Frontiers in Microbiology, 7, 1833. [PubMed] [Google Scholar]
  232. Zhao Z, Wang R, Zhao W, Qi M, Zhao J, Zhang L, Li J, Liu A. 2015. Genotyping and subtyping of Giardia and Cryptosporidium isolates from commensal rodents in China. Parasitology, 142, 800–806. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.