Open Access
Research Article
Issue
Parasite
Volume 24, 2017
Article Number 22
Number of page(s) 11
DOI https://doi.org/10.1051/parasite/2017023
Published online 19 June 2017
  1. Anderson I, Low JS, Weston S, Weinberger M, Zhyvoloup A, Labokha AA, Corazza G, Kitson RA, Moody CJ, Marcello A, Fassati A. 2014. Heat shock protein 90 controls HIV-1 reactivation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), E1528–E1537. [CrossRef] [PubMed] [Google Scholar]
  2. Angel SO, Figueras MJ, Alomar ML, Echeverria PC, Deng B. 2014. Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite. Parasitology, 141(9), 1138–1147. [CrossRef] [PubMed] [Google Scholar]
  3. Banumathy G, Singh V, Pavithra SR, Tatu U. 2003. Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. Journal of Biological Chemistry, 278(20), 18336–18345. [CrossRef] [Google Scholar]
  4. Blankenship JR, Heitman J. 2005. Calcineurin is required for Candida albicans to survive calcium stress in serum. Infection and Immunity, 73(9), 5767–5774. [CrossRef] [PubMed] [Google Scholar]
  5. Buguliskis JS, Brossier F, Shuman J, Sibley LD. 2010. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathogens, 6(4), e1000858. [CrossRef] [PubMed] [Google Scholar]
  6. Calderwood SK, Mambula SS, Gray PJ Jr., Theriault JR. 2007. Extracellular heat shock proteins in cell signaling. FEBS Letters, 581(19), 3689–3694. [CrossRef] [PubMed] [Google Scholar]
  7. Cao L, Wang Z, Wang S, Li J, Wang X, Wei F, Liu Q. 2016. Deletion of mitogen-activated protein kinase 1 inhibits development and growth of Toxoplasma gondii. Parasitology Research, 115(2), 797–805. [CrossRef] [PubMed] [Google Scholar]
  8. Contini C, Seraceni S, Cultrera R, Incorvaia C, Sebastiani A, Picot S. 2005. Evaluation of a real-time PCR-based assay using the lightcycler system for detection of Toxoplasma gondii bradyzoite genes in blood specimens from patients with toxoplasmic retinochoroiditis. International Journal for Parasitology, 35(3), 275–283. [CrossRef] [PubMed] [Google Scholar]
  9. Dadimoghaddam Y, Daryani A, Sharif M, Ahmadpour E, Hossienikhah Z. 2014. Tissue tropism and parasite burden of Toxoplasma gondii RH strain in experimentally infected mice. Asian Pacific Journal of Tropical Medicine, 7(7), 521–524. [CrossRef] [PubMed] [Google Scholar]
  10. Debnath A, Shahinas D, Bryant C, Hirata K, Miyamoto Y, Hwang G, Gut J, Renslo AR, Pillai DR, Eckmann L, Reed SL, McKerrow JH. 2014. Hsp90 inhibitors as new leads to target parasitic diarrheal diseases. Antimicrobical Agents and Chemotherapy, 58(7), 4138–4144. [CrossRef] [Google Scholar]
  11. Dzierszinski F, Nishi M, Ouko L, Roos DS. 2004. Dynamics of Toxoplasma gondii differentiation. Eukaryotic Cell, 3(4), 992–1003. [CrossRef] [PubMed] [Google Scholar]
  12. Eaton MS, Weiss LM, Kim K. 2006. Cyclic nucleotide kinases and tachyzoite-bradyzoite transition in Toxoplasma gondii. International Journal for Parasitology, 36(1), 107–114. [CrossRef] [PubMed] [Google Scholar]
  13. Echeverria PC, Matrajt M, Harb OS, Zappia MP, Costas MA, Roos DS, Dubremetz JF, Angel SO. 2005. Toxoplasma gondii Hsp90 is a potential drug target whose expression and subcellular localization are developmentally regulated. Journal of Molecular Biology, 350(4), 723–734. [CrossRef] [PubMed] [Google Scholar]
  14. Fallahi S, Seyyed Tabaei SJ, Pournia Y, Zebardast N, Kazemi B. 2014. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia. Diagnostic Microbiology and Infectious Disease, 79(3), 347–354. [CrossRef] [PubMed] [Google Scholar]
  15. Faya N, Penkler DL, Tastan Bishop O. 2015. Human, vector and parasite Hsp90 proteins: a comparative bioinformatics analysis. FEBS Open Bio, 14(5), 916–927. [CrossRef] [Google Scholar]
  16. Ferreira da Silva MDF, Barbosa HS, Gross U, Luder CG. 2008. Stress-related and spontaneous stage differentiation of Toxoplasma gondii. Molecular Biosystems, 4(8), 824–834. [CrossRef] [PubMed] [Google Scholar]
  17. Galvan-Ramirez Mde L, Troyo-Sanroman R, Roman S, Bernal-Redondo R, Vazquez Castellanos JL. 2012. Prevalence of Toxoplasma infection in Mexican newborns and children: a systematic review from 1954 to 2009. ISRN Pediatrocs, 2012, 501216. [Google Scholar]
  18. Graefe SEB, Wiesgigl M, Gaworski I, Macdonald A, Clos J. 2002. Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryotic Cell, 1(6), 936–943. [CrossRef] [PubMed] [Google Scholar]
  19. Hartl FU, Hayer-Hartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295(5561), 1852–1858. [CrossRef] [PubMed] [Google Scholar]
  20. Hombach A, Clos J. 2014. No stress-Hsp90 and signal transduction in Leishmania. Parasitology, 141(9), 1156–1166. [CrossRef] [PubMed] [Google Scholar]
  21. Hombach A, Ommen G, Chrobak M, Clos J. 2013. The Hsp90-Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cellular Microbiology, 15(4), 585–600. [CrossRef] [PubMed] [Google Scholar]
  22. Hombach A, Ommen G, Sattler V, Clos J. 2015. Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest. Cell Stress Chaperones, 20(4), 673–685. [CrossRef] [PubMed] [Google Scholar]
  23. Hunter CA, Sibley LD. 2012. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature Reviews Microbiology, 10(11), 766–778. [CrossRef] [PubMed] [Google Scholar]
  24. Imai J, Yahara I. 2000. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Molecular Biology of the Cell, 20(24), 9262–9270. [CrossRef] [Google Scholar]
  25. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. 2010. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. Journal of Innate Immunity, 2(3), 238–247. [CrossRef] [PubMed] [Google Scholar]
  26. Jones JL, Dubey JP. 2012. Foodborne toxoplasmosis. Clinical Infectious Diseases, 55(6), 845–851. [CrossRef] [Google Scholar]
  27. Kim SK, Karasov A, Boothroyd JC. 2007. Bradyzoite-specific surface antigen SRS9 plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control of parasite replication in the intestine. Infection and immunity, 75(4), 1626–1634. [CrossRef] [PubMed] [Google Scholar]
  28. Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C. 2007. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion, 1(1), 53–60. [CrossRef] [PubMed] [Google Scholar]
  29. Li X, Chen DI, Hua Q, Wan Y, Zheng L, Liu Y, Lin J, Pan C, Hu X, Tan F. 2016. Induction of autophagy interferes the tachyzoite to bradyzoite transformation of Toxoplasma gondii. Parasitology, 143(5), 639–645. [CrossRef] [PubMed] [Google Scholar]
  30. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH. 2015. The role of heat shock proteins in cancer. Cancer Letters, 360(2), 114–118. [CrossRef] [PubMed] [Google Scholar]
  31. Liu Q, Wang ZD, Huang SY, Zhu XQ. 2015. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasite Vector, 28(8), 292. [CrossRef] [PubMed] [Google Scholar]
  32. Ma YF, Zhang Y, Kim K, Weiss LM. 2004. Identification and characterisation of a regulatory region in the Toxoplasma gondii hsp70 genomic locus. International Journal for Parasitology, 34(3), 333–346. [CrossRef] [PubMed] [Google Scholar]
  33. Messina M, Niesman I, Mercier C, Sibley LD. 1995. Stable DNA transformation of Toxoplasma gondii using phleomycin selection. Gene, 165(2), 213–217. [CrossRef] [Google Scholar]
  34. Mohammed SB, Bakheit MA, Ernst M, Ahmed JS, Seitzer U. 2013. Identification and characterization of Theileria annulata heat-shock protein 90 (HSP90) isoforms. Transboundary Emerging Diseases, 60(2), 137–149. [CrossRef] [Google Scholar]
  35. Monzote L, Siddiq A. 2011. Drug development to protozoan diseases. Open Medicinal Chemistry Journal, 5, 1–3. [CrossRef] [Google Scholar]
  36. Morales MA, Watanabe R, Dacher M, Chafey P, Osorio y Fortea J, Scott DA, Beverley SM, Ommen G, Clos J, Hem S, Lenormand P, Rousselle JC, Namane A, Spath GF. 2010. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8381–8386. [CrossRef] [PubMed] [Google Scholar]
  37. Paredes-Santos TC, Tomita T, Yan Fen M, de Souza W, Attias M, Vommaro RC, Weiss LM. 2016. Development of dual fluorescent stage specific reporter strain of Toxoplasma gondii to follow tachyzoite and bradyzoite development in vitro and in vivo. Microbes and Infection, 18(1), 39–47. [CrossRef] [PubMed] [Google Scholar]
  38. Peroval M, Pery P, Labbe M. 2006. The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. International Journal for Parasitology, 36(10–11), 1205–1215. [CrossRef] [PubMed] [Google Scholar]
  39. Radke JR, Guerini MN, Jerome M, White MW. 2003. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. Molecular and Biochemical Parasitology, 131(2), 119–127. [CrossRef] [PubMed] [Google Scholar]
  40. Richa A, Moushami M, Subhash CL. 2007. Heat shock genes – integrating cell survival and death. Journal of Biosciences, 32(3), 595–610. [CrossRef] [PubMed] [Google Scholar]
  41. Robert-Gangneux F. 2014. It is not only the cat that did it: how to prevent and treat congenital toxoplasmosis. Journal of Infection, 68(1), S125–S133. [CrossRef] [Google Scholar]
  42. Roesch F, Meziane O, Kula A, Nisole SB, Fo Porrot, Anderson I, Mammano F, Fassati A, Marcello A, Benkirane M, Schwartz O. 2012. Hyperthermia stimulates HIV-1 replication. PloS Pathogens, 8(7), e1002792. [CrossRef] [PubMed] [Google Scholar]
  43. Rommereim LM, Hortua Triana MA, Falla A, Sanders KL, Guevara RB, Bzik DJ, Fox BA. 2013. Genetic manipulation in Δku80 strains for functional genomic analysis of Toxoplasma gondii. Journal of Visualized Experiments, 77, 50598. [Google Scholar]
  44. Roy N, Nageshan RK, Ranade S, Tatu U. 2012. Heat shock protein 90 from neglected protozoan parasites. Biochimica Biophysica Acta-biomembranes, 1823(3), 707–711. [CrossRef] [Google Scholar]
  45. Salminen A, Paimela T, Suuronen T, Kaarniranta K. 2008. Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunology Letters, 117(1), 9–15. [CrossRef] [PubMed] [Google Scholar]
  46. Silva NM, Tafuri WL, Alvarez-Leite JI, Mineo JR, Gazzinelli RT. 2002. Toxoplasma gondii in vivo expression of BAG-5 and cyst formation is independent of TNF p55 receptor and inducible nitric oxide synthase functions. Microbes and Infection, 4(3), 261–270. [CrossRef] [PubMed] [Google Scholar]
  47. Singh M, Sharma S, Bhattacharya A, Tatu U. 2015. Heat Shock Protein 90 regulates encystation in Entamoeba. Frontiers in Microbiology, 6, 1125. [PubMed] [Google Scholar]
  48. Sugi T, Ma YF, Tomita T, Murakoshi F, Eaton MS, Yakubu R, Han B, Tu V, Kato K, Kawazu S, Gupta N, Suvorova ES, White MW, Kim K, Weiss LM. 2016. Toxoplasma gondii cyclic AMP-dependent protein kinase subunit 3 is involved in the switch from tachyzoite to bradyzoite development. MBio, 7(3), e00755–16. [CrossRef] [PubMed] [Google Scholar]
  49. Toursel C, Dzierszinski F, Bernigaud A, Mortuaire M, Tomavo S. 2000. Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii. Molecular and Biochemical Parasitology, 111(2), 319–332. [CrossRef] [PubMed] [Google Scholar]
  50. Tsan MF, Gao B. 2009. Heat shock proteins and immune system. Journal of Leukocyte Biology, 85(6), 905–910. [CrossRef] [PubMed] [Google Scholar]
  51. Vanchinathan P, Brewer JL, Harb OS, Boothroyd JC, Singh U. 2005. Disruption of a locus encoding a nucleolar zinc finger protein decreases tachyzoite-to-bradyzoite differentiation in Toxoplasma gondii. Infection immunology, 73(10), 6680–6688. [CrossRef] [Google Scholar]
  52. Wang T, Maser P, Picard D. 2016. Inhibition of Plasmodium falciparum Hsp90 contributes to the antimalarial activities of aminoalcohol-carbazoles. Journal of Medicinal Chemistry, 59(13), 6344–6352. [CrossRef] [PubMed] [Google Scholar]
  53. Yamasaki M, Tsuboi Y, Taniyama Y, Uchida N, Sato R, Nakamura K, Ohta H, Takiguchi M. 2016. Molecular cloning, phylogenetic analysis and heat shock response of Babesia. Journal of Veterinary Medical Science, 78(8), 1355–1360. [CrossRef] [Google Scholar]
  54. Zhang H, Zhang Y, Cao J, Zhou Y, Wang N, Zhou J. 2013. Determination of stage interconversion in vitro and in vivo by construction of transgenic Toxoplasma gondii that stably express stage-specific fluorescent proteins. Experimental Parasitology, 134(3), 275–280. [CrossRef] [PubMed] [Google Scholar]
  55. Zheng J, Jia H, Zheng Y. 2015. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9. International Journal for Parasitology, 45(2–3), 141–148. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.