Open Access
Volume 23, 2016
Article Number 59
Number of page(s) 7
Published online 21 December 2016
  1. Anderson RP, Peterson AT, Gómez-Laverde M. 2002. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos, 93(1), 3–16. [CrossRef] [Google Scholar]
  2. Attwood SW, Ibaraki M, Saitoh Y, Nihei N, Janies DA. 2015. Comparative phylogenetic studies on Schistosoma japonicum and its snail intermediate host Oncomelania hupensis: origins, dispersal and coevolution. PLoS Neglected Tropical Diseases, 9(7), e0003935. [CrossRef] [PubMed] [Google Scholar]
  3. Charlier J, Sanders M, Vercruysse J. 2009. The direct costs of infections with gastrointestinal nematodes and liver fluke in the Flemish dairy population. Vlaams Diergeneeskundig Tijdschrift, 78(4), 196–200. [Google Scholar]
  4. Chen YY, Huang XB, Xiao Y, Jiang Y, Shan XW, Zhang J, Cai SX, Liu JB. 2014. Spatial analysis of Schistosomiasis in Hubei Province, China: a GIS-based analysis of Schistosomiasis from 2009 to 2013. PLoS One, 10(4), e0118362. [CrossRef] [Google Scholar]
  5. Darrenf W. 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9(6), 723–735. [Google Scholar]
  6. Durr PA, Tait N, Lawson AB. 2005. Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis. Preventive Veterinary Medicine, 71(3–4), 157–172. [CrossRef] [PubMed] [Google Scholar]
  7. Galaktionov KV, Dobrovolskij AA. 2003. The biology and evolution of Trematodes. Springer: The Netherlands. [Google Scholar]
  8. Gao X, Xiao J, Qin H, Cao Z, Wang H. 2016. Impact of meteorological factors on the prevalence of porcine pasteurellosis in the southcentral of Mainland China. Preventive Veterinary Medicine, 125, 75–81. [CrossRef] [PubMed] [Google Scholar]
  9. Hill DE, Dubey JP, Baroch JA, Swafford SR, Fournet VF, Hawkinscooper D, Pyburn DG, Schmit BS, Gamble HR, Pedersen K. 2014. Surveillance of feral swine for Trichinella spp. and Toxoplasma gondii in the USA and host-related factors associated with infection. Veterinary Parasitology, 205(3–4), 653–665. [CrossRef] [PubMed] [Google Scholar]
  10. Kendall SB, Mccullough FS. 1951. The emergence of the cercariae of Fasciola hepatica from the snail Limnaea truncatula. Journal of Helminthology, 25(1–2), 77–92. [CrossRef] [Google Scholar]
  11. Madsen H, Carabin H, Balolong D, Tallo VL, Olveda R, Yuan M, Mcgarvey ST. 2008. Prevalence of Schistosoma japonicum infection of Oncomelania quadrasi snail colonies in 50 irrigated and rain-fed villages of Samar Province, the Philippines. Acta Tropica, 105(3), 235–241. [CrossRef] [PubMed] [Google Scholar]
  12. Martínez-Valladares M, Robles-Pérez D, Martínez-Pérez JM, Cordero-Pérez C, Ma DRF, Fernández-Pato N, González-Lanza C, Castañón-Ordóñez L, Rojo-Vázquez FA. 2013. Prevalence of gastrointestinal nematodes and Fasciola hepatica in sheep in the northwest of Spain: relation to climatic conditions and/or man-made environmental modifications. Parasites & Vectors, 6, 282. [CrossRef] [PubMed] [Google Scholar]
  13. Mas-Coma S, Bargues MD, Valero MA. 2005. Fascioliasis and other plant-borne trematode zoonoses. International Journal for Parasitology, 35(11–12), 1255–1278. [CrossRef] [PubMed] [Google Scholar]
  14. Mas-Coma S, Valero MA, Bargues MD. 2009. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary Parasitology, 163(4), 264–280. [Google Scholar]
  15. Mas-Coma S, Valero MA, Bargues MD. 2009. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Advances in Parasitology, 69, 41–146. [Google Scholar]
  16. Matyukhina DS, Miquelle DG, Murzin AA, Pikunov DG, Fomenko PV, Aramilev VV, Litvinov MN, Salkina GP, Seryodkin IV, Nikolaev IG. 2014. Assessing the influence of environmental parameters on Amur Tiger distribution in the Russian Far East Using a MaxEnt modeling approach. Achievements in the Life Sciences, 8(2), 95–100. [CrossRef] [Google Scholar]
  17. Mccann CM, Baylis M, Williams DJL. 2010. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. International Journal for Parasitology, 40(9), 1021–1028. [CrossRef] [PubMed] [Google Scholar]
  18. Moreno R, Zamora R, Molina JR, Vasquez A, Herrera MÁ. 2011. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (MaxEnt). Ecological Informatics, 6(6), 364–370. [CrossRef] [Google Scholar]
  19. Novobilský A, Engström A, Sollenberg S, Gustafsson K, Morrison DA, Höglund J. 2014. Transmission patterns of Fasciola hepatica to ruminants in Sweden. Veterinary Parasitology, 203(3–4), 276–286. [CrossRef] [PubMed] [Google Scholar]
  20. Ollerenshaw CB. 1971. Some observations on the epidemiology of fascioliasis in relation to the timing of molluscicide applications in the control of the disease. Veterinary Record, 88, 152–164. [CrossRef] [PubMed] [Google Scholar]
  21. Ollerenshaw CB, Smith LP. 1969. Meteorological factors and forecasts of helminthic disease. Advances in Parasitology, 7, 283–323. [CrossRef] [PubMed] [Google Scholar]
  22. Pérez-Creo A, Díaz P, López C, Béjar JP, Martínez-Sernández V, Panadero R, Díez-Baños P, Ubeira FM, Morrondo P. 2015. Fasciola hepatica in goats from north-western Spain: Risk factor analysis using a capture ELISA. Veterinary Journal, 208, 104–105. [CrossRef] [Google Scholar]
  23. Peterson AT, Papeş M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. [CrossRef] [Google Scholar]
  24. Peterson AT, Sánchez-Cordero V, Martínez-Meyer E, Navarro-Sigüenza AG. 2006. Tracking population extirpations via melding ecological niche modeling with land-cover information. Ecological Modelling, 195(3–4), 229–236. [CrossRef] [Google Scholar]
  25. Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. [Google Scholar]
  26. Phillips SJ, Dudík M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. [CrossRef] [Google Scholar]
  27. Poulin R. 2006. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology, 132(Pt 1), 143–151. [CrossRef] [PubMed] [Google Scholar]
  28. Rapsch C, Dahinden T, Heinzmann D, Torgerson PR, Braun U, Deplazes P, Hurni L, Bär H, Knubbenschweizer G. 2008. An interactive map to assess the potential spread of Lymnaea truncatula and the free-living stages of Fasciola hepatica in Switzerland. Veterinary Parasitology, 154(3–4), 242–249. [CrossRef] [PubMed] [Google Scholar]
  29. Sangwan AK, Jackson B, Glanville WD, Pfeiffer DU, Stevens KB. 2016. Spatial analysis and identification of environmental risk factors affecting the distribution of Indoplanorbis and Lymnaea species in semi-arid and irrigated areas of Haryana, India. Parasite Epidemiology & Control, 1(3), 252–262. [CrossRef] [Google Scholar]
  30. Schweizer G, Braun U, Deplazes P, Torgerson PR. 2005. Estimating the financial losses due to bovine fasciolosis in Switzerland. Veterinary Record, 157(7), 188–193. [CrossRef] [Google Scholar]
  31. Stockwell DRB, Peterson AT. 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148(1), 1–13. [CrossRef] [Google Scholar]
  32. Team RC. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  33. Tognelli MF, Roigjuñent SA, Marvaldi AE, Flores GE, Lobo JM. 2009. An evaluation of methods for modelling distribution of Patagonian insects. Revista Chilena De Historia Natural, 82(3), 347–360. [CrossRef] [Google Scholar]
  34. Torgerson P, Claxton J. 1999. Epidemiology and control, in Fasciolosis. Dalton JP, Editor. CABI Publishing, Utrecht, Netherlands. p. 113–149. [Google Scholar]
  35. Tum S, Puotinen ML, Copeman DB. 2004. A geographic information systems model for mapping risk of fasciolosis in cattle and buffaloes in Cambodia. Veterinary Parasitology, 122(2), 141–149. [CrossRef] [PubMed] [Google Scholar]
  36. Yuan HS, Wei YL, Wang XG. 2015. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology, 17, 140–145. [CrossRef] [Google Scholar]
  37. Zhao X, Cao M, Feng HH, Fan H, Chen F, Feng Z, Li X, Zhou XH. 2014. Japanese encephalitis risk and contextual risk factors in Southwest China: A Bayesian hierarchical spatial and spatiotemporal analysis. International Journal of Environmental Research & Public Health, 11(4), 4201–4217. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.