Open Access
Review
Issue
Parasite
Volume 23, 2016
Article Number 49
Number of page(s) 13
DOI https://doi.org/10.1051/parasite/2016058
Published online 16 November 2016
  1. Adam F, Digoutte JP. 2005. Virus d’Afrique (Base de Données). Centre Collaborateur OMS de Référence et de Recherche pour les Arbovirus et les Virus de Fièvres Hémorrhagiques (CRORA). Institut Pasteur de Dakar: Dakar, Senegal. Available at: http://www.pasteur.fr/recherche/banques/CRORA/ [Google Scholar]
  2. Amraoui F, Krida G, Bouattour A, Rhim A, Daaboud J, Harrat Z, Boubidi SC, Tijane M, Sarih M. 2012. Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region. PLoS One, 7(5), e36757. [CrossRef] [PubMed] [Google Scholar]
  3. Anderson J, Main A, Cheng G, Ferrandino F, Fikrig E. 2012. Horizontal and vertical transmission of West Nile Virus Genotype NY99 by Culex salinarius and Genotypes NY99 and WN02 by Culex tarsalis. The American Journal of Tropical Medicine and Hygiene, 86(1), 134–139. [CrossRef] [PubMed] [Google Scholar]
  4. Andrianaivolambo L, Domarle O, Randrianarivelojosia M, Ratovonjato J, Le Goff G, Talman A, Ariey F, Robert V. 2010. Anthropophilic mosquitoes and malaria transmission in the eastern foothills of the Central Highlands of Madagascar. Acta Tropica, 116, 240–245. [CrossRef] [PubMed] [Google Scholar]
  5. Andrianandrasana H, Randriamahefasoa J, Durbin J, Lewis RE, Ratsimbazafy RH. 2005. Participatory ecological monitoring of the Alaotra wetlands in Madagascar. Biodiversity and Conservation, 14, 2757–2774. [CrossRef] [Google Scholar]
  6. Appert O. 1971. Die limikolen des mangokygebietes in Südwest-Madagaskar. Der Ornithologische Beobachter, 68, 53–77. [Google Scholar]
  7. Aregawi M, Cibulskis RE, Otten M, Williams R.. 2009. World Malaria Report, global Malaria Programme. Surveillance Monitoring and Evaluation Unit. World Health Organization: Geneva. [Google Scholar]
  8. Austgen L, Bowen RA, Bunning M, Davis B, Mitchell C, Chang G. 2004. Experimental infection of cats and dogs with West Nile Virus. Emerging Infectious Diseases, 10, 82–86. [CrossRef] [PubMed] [Google Scholar]
  9. Balenghein T, Fouque F, Sabatier P, Bicout D. 2006. Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. Journal Medical Entomology, 43, 936–946. [Google Scholar]
  10. Balenghien T, Sabatier P, Bicout D. 2013. Histoire et épidémiologie de la fièvre West Nile, in Le virus du Nil occidental. Ed. Quae: Versailles. p. 7–24 (Synthèses). [Google Scholar]
  11. Baqar S. 1993. Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. The American Journal of Tropical Medicine and Hygiene, 48(6), 757–762. [PubMed] [Google Scholar]
  12. Barzon L, Pacenti M, Franchin E, Lavezzo E, Masi G, Squarzon L, Pagni S, Toppo S, Russo F, Cattai M, Cusinato R, Palu G. 2013. Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013. Eurosurveillance, 18, 20591. [CrossRef] [Google Scholar]
  13. Bernkopf H, Levine S, Nerson R. 1953. Isolation of West Nile virus in Israel. Journal of Infectious Diseases, 93, 207–218. [CrossRef] [PubMed] [Google Scholar]
  14. Boyer S, Tantely ML, Randriamaherijaona S, Andrianaivolambo L, Cardinale E. 2014. Mosquitoes sampling strategy for studying relationships between wild and domestic birds, mosquitoes vectors and human in Madagascar. Archives de l’Institut Pasteur de Madagascar, 71(1), 1–8. [Google Scholar]
  15. Brunhes J, Boussès P, Da Cunha Ramos H. 2011. Les Aedeomyia Theobald, 1901, des régions afro-tropical et malgache (Diptera, Culicidae). Bulletin de la Société Entomologique de France, 116(1), 99–128. [Google Scholar]
  16. Burt F, Grobbelaar A, Leman P, Anthony F, Gibson G, Swanepoel R. 2002. Phylogenetic relationships of southern African West Nile virus isolates. Emerging Infectious Diseases, 8, 820–826. [CrossRef] [PubMed] [Google Scholar]
  17. Calistri P, Giovannini A, Hubalek Z, Ionescu A, Monaco F, Savini G, Lelli R. 2010. Epidemiology of West Nile in Europe and in the Mediterranean Basin. Open Virology Journal, 4, 29–37. [Google Scholar]
  18. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. 2002. West Nile virus. Lancet, 2, 519–529. [CrossRef] [Google Scholar]
  19. Cappelle J, Caron A, Servan de Almeida R, Gil P, Pedrono M, Mundava J, Fofana B, Balanca G, Dakouo M, Oulde el Mamy A, Abolnik C, Maminiaina O, Cumming G, De Visscher M, Albina E, Chevalier V, Gaidet N. 2015. Empirical analysis suggests continuous and homogeneous circulation of Newcastle disease virus in a wide range of wild bird species in Africa. Epidemiology and Infection, 143, 1292–1303. [CrossRef] [PubMed] [Google Scholar]
  20. CDC. 2012. Mosquito species in which West Nile virus has been detected, United States, 1999–2012. http://www.cdc.gov/westnile/resources/pdfs/Mosquito%20Species%201999-2012.pdf. [Google Scholar]
  21. Chamberlain R, Sudia W. 1961. Mechanism of transmission of viruses by mosquitoes. Annual Review of Entomology, 6, 371–390. [CrossRef] [PubMed] [Google Scholar]
  22. Ciccozzi M, Peletto S, Cella E, Giovanetti M, Lai A, Gabanelli E, Acutis P, Modesto P, Rezza G, Platonov A, Lo Presti A, Zehender G. 2013. Epidemiological history and phylogeography of West Nile virus lineage 2. Infection, Genetics and Evolution, 17, 46–50. [CrossRef] [Google Scholar]
  23. Clarcke D, Casals J. 1958. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne virus. The American Journal of Tropical Medicine and Hygiene, 7, 561–573. [PubMed] [Google Scholar]
  24. Cordellier R, Geoffroy B. 1976. Les moustiques de la République Centrafricaine. Travaux et Documents. ORSTOM: Paris. p. 105. [Google Scholar]
  25. Cornel A, Jupp PG, Blackburn N. 1993. Environmental temperature on the vector competence of Culex univittatus (Diptera: Culicidae) for West Nile virus. Journal of Medical Entomology, 30(2), 449–456. [CrossRef] [PubMed] [Google Scholar]
  26. Coulanges P, Robin Y, Le Gonidec G, Mayoux A, Bordahandy R. 1974. Chiroptères et arbovirus à Madagascar (Isolement de souches de virus Dakar-Bat, étude sérologique de chauves-souris frugivores). Archives de l’Institut Pasteur de Madagascar, 43, 109–118. [Google Scholar]
  27. Crans WJ. 2004. A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. Journal of Vector Ecology, 29(1), 1–10. [Google Scholar]
  28. Donadieu E, Bahuon C, Lowenski S, Zientara S, Coulpier M, Lecollinet S. 2013. Differential virulence and pathogenesis of West Nile viruses. Viruses, 5, 2856–2880. [CrossRef] [PubMed] [Google Scholar]
  29. Ekstrom J. 2003. Psittaciformes: Coracopsis spp., Parrots, in The natural history of Madagascar, Goodman SM, Benstead JP, Editors. University of Chicago Press: Chicago, Illinois. p. 1098–1102. [Google Scholar]
  30. Elnaiem DEA, Kelley K, Wright S, Laffey R, Yoshimura G, Reed M, Goodman G, Thiemann T, Reimer L, Reisen WK, Brown D. 2008. Impact of aerial spraying of pyrethrin insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) abundance and West Nile virus infection rates in an urban/suburban area of Sacramento County, California. Vector-Borne and Zoonotic Diseases, 45, 751–757. [Google Scholar]
  31. Epstein PR. 2001. West Nile virus and climate. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 78, 367–371. [Google Scholar]
  32. Fall AG, Diaïte A, Lancelot R, Tran A, Soti V, Etter E, Konaté L, Faye O, Bouyer J. 2011. Feeding behaviour of potential vectors of West Nile virus in Senegal. Parasites and Vectors, 4, 1–7. [CrossRef] [Google Scholar]
  33. Farajollahi A, Kesavaraju B, Price DC, Williams GM, Healy SP, Gaugler R, Nelder MP. 2009. Field efficacy of BG-Sentinel and Industry-Standard Traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. Vector-Borne and Zoonotic Diseases, 46, 919–925. [Google Scholar]
  34. Fontenille D. 1989. Arbovirus transmission cycles in Madagascar. Archives de l’Institut Pasteur de Madagascar, 55, 1–317. [Google Scholar]
  35. Fontenille D, Rodhain F, Digoutte JP, Mathiot CH, Morvan J, Coulanges P. 1989. Les cycles de transmission du virus West Nile à Madagascar, Océan Indien. Annales de la Société Belge de Médecine Tropicale, 69, 233–243. [Google Scholar]
  36. Gangoso L, Grande J, Llorente F, Jiménez-Clavero M, Pérez J, Figuerola J. 2010. Prevalence of neutralizing antibodies to West Nile virus in Eleonora’s Falcons in the Canary Islands. Journal of Wildlife Diseases, 46, 1321–1324. [CrossRef] [PubMed] [Google Scholar]
  37. Geissbühler Y, Chaki P, Emidi B, Govella N, Shirima R, Mayagaya V, Mtasiwa D, Mshinda H, Fillinger U, Lindsay S, Kannady K, de Castro M, Tanner M, Killeen G. 2007. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malaria Journal, 6, 126. [CrossRef] [PubMed] [Google Scholar]
  38. Goddard LB, Roth AE, Reisen WK, Scott TW. 2002. Vector competence of California mosquitoes for West Nile virus. Emerging Infectious Diseases, 8, 1385–1391. [CrossRef] [PubMed] [Google Scholar]
  39. Goddard LB, Roth AE, Reisen WK, Scott TW. 2003. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. Journal of Medical Entomology, 40, 743–746. [Google Scholar]
  40. Goodman SM, Meininger P. 1989. The birds of Egypt. Oxford University Press: Oxford. [Google Scholar]
  41. Grandadam M, Renaudat C. 2013. Description du virus, in Le virus du Nil occidental. Ed. Quae: Versailles. p. 25–41 (Synthèses). [Google Scholar]
  42. Grimstad P, Paulson S, Craig G. 1985. Vector competence of Aedes hendersoni (Diptera, Culicidae) for La Crosse virus and evidence of a salivary gland escape barrier. Journal of Medical Entomology, 22, 447–453. [CrossRef] [PubMed] [Google Scholar]
  43. Gschweng M, Kalko E, Querner U, Fiedler W, Berthold P. 2008. All across Africa: Highly individual migration routes of Eleonora’s Falcon. Proceedings of the Royal Society B, 275, 2887–2896. [CrossRef] [Google Scholar]
  44. Hamer G, Walker E, Brawn J, Loss S, Ruiz M, Goldberg T, Schotthoefer A, Brown W, Wheeler E, Kitron U. 2008. Rapid amplification of West Nile virus: The role of hatch-year bird. Vector-Borne and Zoonotic Diseases, 8, 57–67. [Google Scholar]
  45. Han LL, Popovici F, Alexander JP, Laurentia V, Tengelsen LA, Cernescu C, Gary HE, Ion-Nedelcu N, Campbell GL, Tsai TF. 1999. Risk factors for West Nile virus infection and meningoencephalitis, Romania, 1996. Journal of Infectious Diseases, 179, 230–233. [CrossRef] [Google Scholar]
  46. Hardy J, Houk E, Kramer L, Reeves W. 1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annual Review of Entomology, 28, 229–262. [CrossRef] [PubMed] [Google Scholar]
  47. Hawkins AFA, Goodman SM. 2003. Introduction to the birds, in The natural history of Madagascar. Goodman SM, Benstead JP, Editors. University of Chicago Press: Chicago, Illinois. p. 1019–1044. [Google Scholar]
  48. Hayes C, Basit A, Bagar S, Akhter R. 1980. Vector competence of Culex tritaeniorhynchus (Diptera: Culicidae) for West Nile virus. Journal of Medical Entomology, 17, 172–177. [CrossRef] [PubMed] [Google Scholar]
  49. Hayes EB, Gubler DJ. 2006. West Nile virus: Epidemiology and clinical features of an emerging epidemic in the United States. Annual Review of Medicine, 57, 181–194. [CrossRef] [PubMed] [Google Scholar]
  50. Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. 2005. Epidemiology and transmission dynamics of West Nile virus disease. Emerging Infectious Diseases, 11, 1167–1173. [Google Scholar]
  51. Hinckley A, O’Leary D, Hayes E. 2007. Transmission of West Nile virus through human breast milk seems to be rare. Pediatrics, 119, e666–e671. [CrossRef] [PubMed] [Google Scholar]
  52. Javed S, Douglas D, Khan S, Shah J, Al Hammadi A. 2012. First description of autumn migration of Sooty Falcon Falco concolor from the United Arab Emirates to Madagascar using satellite telemetry. Bird Conservation International, 22, 106–119. [CrossRef] [Google Scholar]
  53. Johnson A, Martin D, Karabatsos N, Roehrig J. 2000. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology, 38, 1827–1831. [PubMed] [Google Scholar]
  54. Jourdain E. 2006. Oiseaux sauvages et virus West Nile: étude écoépidémiologique en Camargue. Université Joseph Fourier: Grenoble, France. p. 204. [Google Scholar]
  55. Jupp P. 1973. Field studies on the feeding habits of mosquitoes in the highveld region of South Africa. South African Journal of Medical Sciences, 38, 69–83. [Google Scholar]
  56. Jupp P. 2006. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Annals of the New York Academy of Sciences, 951, 143–152. [Google Scholar]
  57. Klenk K, Snow J, Morgan K, Bowen R, Stephens M, Foster F, Gordy P, Beckett S, Komar N, Gubler D, Bunning M. 2004. Alligators as West Nile virus amplifiers. Emerging Infectious Diseases, 10, 2150–2155. [CrossRef] [PubMed] [Google Scholar]
  58. Klipatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biology, 4, 606–610. [Google Scholar]
  59. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M. 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases, 9, 311–322. [Google Scholar]
  60. Kramer LD, Hardy JL, Presser SB, Houk EJ. 1981. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. The American Journal of Tropical Medicine and Hygiene, 30, 190–197. [PubMed] [Google Scholar]
  61. Lacour G, Vernichon F, Cadilhac N, Boyer S, Lagneau C, Hance T. 2014. When mothers anticipate: Effects of the prediapause stage on embryo development time and of maternal photoperiod on eggs of a temperate and a tropical strains of Aedes albopictus (Diptera: Culicidae). Journal of Insect Physiology, 71, 87–96. [CrossRef] [PubMed] [Google Scholar]
  62. Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT. 2002. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe and the Middle East. Virology, 298, 96–105. [CrossRef] [PubMed] [Google Scholar]
  63. Lanthier I, Hébert M, Tremblay D, Harel J, Dallaire AD, Girard C. 2004. Natural West Nile virus infection in a captive juvenile Arctic wolf (Canis lupus). Journal of Veterinary Diagnostic Investigation, 16, 326–329. [CrossRef] [Google Scholar]
  64. Larrieu S, Cardinale E, Ocquidant P, Roger M, Lepec R, Delatte H, Camuset G, Desprès P, Brottet E, Charlin C, Michault A. 2013. Case report: A fatal neuroinvasive West Nile virus infection in a traveler returning from Madagascar: clinical, epidemiological and veterinary investigations. The American Journal of Tropical Medicine and Hygiene, 89, 211–213. [CrossRef] [PubMed] [Google Scholar]
  65. Le Goff G, Boussès P, Brunhes J. 2007. Révision des Neomelaniconion Newstead (Diptera : Culicidae) de Madagascar : espèces présentes et description de cinq nouvelles espèces. Annales de la Société Entomologique de France (N.S.), 43, 187–200. [CrossRef] [Google Scholar]
  66. Le Goff G, Rajaonarivelo E, Duchemin JB, Robert V. 2002. Revue du genre Coquilletidia (Diptera : Culicidae) à Madagascar et description de la larve de Cq. grandidieri (Blanchard, 1905). Archives de l’Institut Pasteur de Madagascar, 68, 100–103. [Google Scholar]
  67. Leblond A, Pradier S. 2013. Les mammifères, des hôtes accidentels du virus, in Le virus du Nil occidental. Edition Quae: Versailles, France. p. 87–104. [Google Scholar]
  68. Lonchampt C, Migliani R, Ratsitorahina M, Rabarijaona LP, Ramarokoto CE, Rakoto Andrianarivelo M, Rousset D. 2003. Persistance d’une circulation endémique du virus West Nile à Madagascar. Archives de l’Institut Pasteur de Madagascar, 69, 33–36. [Google Scholar]
  69. Ludwig G, Calle P, Mangiafico J, Raphael B, Danner D, Hile J, Clippinger T, Smith J, Cook R, McNamara T. 2002. An outbreak of West Nile virus in a New York City captured wildlife population. The American Journal of Tropical Medicine and Hygiene, 67, 67–75. [PubMed] [Google Scholar]
  70. Lutomiah JL, Koka H, Mutisya J, Yalwala S, Muthoni M, Makio A, Limbaso S, Musila L, Clark JW, Turell MJ, Kioko E, Schnabel D, Sang RC. 2011. Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. Journal of Medical Entomology, 48, 1197–1201. [CrossRef] [PubMed] [Google Scholar]
  71. Mackenzie JS, Williams D. 2009. The zoonotic flavivirus of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent virus. Zoonoses Public Health, 56, 338–356. [CrossRef] [PubMed] [Google Scholar]
  72. Mackenzie JS, Gubler DJ, Petersen L. 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine, 10, 98–109. [CrossRef] [PubMed] [Google Scholar]
  73. Malkinson M, Banet C, Weisman Y, Pokamunski S, King R, Drouet MT, Deubel V. 2002. Introduction of West Nile virus in the Middle East by migrating white storks. Emerging Infectious Diseases, 8, 392–397. [CrossRef] [PubMed] [Google Scholar]
  74. Mandalakas A, Kippes C, Sedransk J, Kile JR, Garg A, McLeod J, Berry RL, Marfin AA. 2005. West Nile virus epidemic, northeast Ohio 2002. Emerging Infectious Diseases, 11, 1774–1777. [CrossRef] [PubMed] [Google Scholar]
  75. Maquart M, Boyer S, Rakotoharinome VM, Ravaomanana J, Tantely ML, Heraud J, Cardinale E. 2016. High prevalence of West Nile virus in domestic birds and detection in 2 new potential mosquito vectors in Madagascar. PloS One, 11, e0147589. [Google Scholar]
  76. Mathiot CH, Clerc Y, Rodhain F, Digoutte JP, Coulanges P. 1983. Le virus West-Nile et Madagascar. Archives de l’Institut Pasteur de Madagascar, 51, 113–124. [Google Scholar]
  77. McMullen A, Albayrak H, May F, Davis C, David WC, Beasley D, Barrett A. 2013. Molecular evolution of lineage 2 West Nile virus. The Journal of General Virology, 94, 318–325. [CrossRef] [PubMed] [Google Scholar]
  78. Migliani R, Tehindrazanarivelo A, Rasamoelisoa J, Raobijaona H, Rakotonirina G, Ramamonjisoa J, Ratsitorahina M, Ramarokoto C, Grosjean P, Rakoto-Andrianarivelo M, Rousset D. 2002. Epidémiologie des encéphalites aiguës à Antananarivo. Centenaire de l’Académie Nationale des Arts, des Lettres et des Sciences 1902-2002. Colloque Scientifique International : “Santé, Environnement et Développement”, Antananarivo, 24-25 juillet 2002. [Google Scholar]
  79. Miller BR, Godsey JR, Crabtree MB, Savage HM, Al-Mazrou Y, Al-Jeffri MH, Abdoon AMM, Al-seghayer SM, Al-Sharani AM, Ksiazek TG. 2002. Isolation and genetic characterization of Rift Valley fever virus from Aedes vexans arabiensis, Kingdom of Saudi Arabia. Emerging Infectious Diseases, 8, 1492–1494. [CrossRef] [PubMed] [Google Scholar]
  80. Molaei G, Andreadis T, Armstrong P, Bueno R, Dennett J, Real S, Sargent C, Bala A, Randle Y, Guzman H, da Rosa A, Wuithiranyagool T, Tesh R. 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. The American Journal of Tropical Medicine and Hygiene, 77, 73–81. [PubMed] [Google Scholar]
  81. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR. 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerging Infectious Diseases, 12, 468–474. [Google Scholar]
  82. Mondet B, Diaite A, Ndione JA, Fall AG, Chevalier V, Lancelot R, Ndiaye M, Ponçon N. 2005. Rainfall patterns and population dynamics of Aedes (Aedimorphus) vexans arabiensis, Patton 1905 (Diptera: Culicidae), a potential vector of Rift Valley fever virus in Senegal. Journal of Vector Ecology, 30, 102–106. [Google Scholar]
  83. Moreau R. 1972. The Palaearctic-African bird migration systems. Academic Press: London. p. 384. [Google Scholar]
  84. Morvan J, Chin L, Fontenille D, Rakotoarivony I, Coulanges P. 1991. Prévalence des anticorps anti-virus West Nile chez les jeunes de 5 à 20 ans à Madagascar. Bulletin de la Société de Pathologie Exotique, 84, 225–234. [Google Scholar]
  85. Mumcuoglu K, Banet-Noach C, Malkinson M, Shalom U, Galun R. 2005. Argasid ticks as possible vectors of West Nile virus in Israel. Vector Borne Zoonotic Disease, 5, 65–71. [CrossRef] [PubMed] [Google Scholar]
  86. Nasci RS, White DJ, Stirling H, Oliver J, Daniels TJ, Falco R, Campbell S, Crans WJ, Savage HM, Lanciotti RS, Moore CG, Godsey MS, Gottfried KL, Mitchell CJ. 2001. West Nile virus isolates from mosquitoes in New York and New Jersey, 1999. Emerging Infectious Diseases, 7, 626–630. [CrossRef] [PubMed] [Google Scholar]
  87. Nash D, Mostashari F, Fine A, Miller J, O’Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Layton M. 2001. The outbreak of West Nile virus infection in the New York City area in 1999. New England Journal of Medicine, 344, 1807–1814. [CrossRef] [PubMed] [Google Scholar]
  88. Nepomichene TNJJ, Elissa N, Cardinale E, Boyer S. 2015. Species diversity, abundance, and host preferences of mosquitoes (Diptera: Culicidae) in two different ecotypes of Madagascar with recent RVFV transmission. Journal of Medical Entomology, 52, 962–969. [CrossRef] [PubMed] [Google Scholar]
  89. Nielsen CF, Armijos MV, Wheeler S, Carpenter TE, Boyce WM, Kelley K, Brown D, Scott TW, Reisen WK. 2008. Risk factors associated with human infection during the 2006 West Nile virus outbreak in Davis, a residential community in northern California. The American Journal of Tropical Medicine and Hygiene, 78, 53–62. [PubMed] [Google Scholar]
  90. Papa A, Bakonyi T, Xanthopoulou K, Vázquez A, Tenorio A, Nowotny N. 2011. Genetic characterization of West Nile virus lineage 2, Greece. Emerging Infectious Diseases, 17, 920–922. [CrossRef] [PubMed] [Google Scholar]
  91. Papa A, Xanthopoulou K, Gewehr S, Mourelatos S. 2011. Detection of West Nile virus lineage 2 in mosquitoes during a human outbreak in Greece. Clinical Microbiology and Infection, 17, 1170–1193. [CrossRef] [Google Scholar]
  92. Paulson S, Grimstad P, Craig G. 1989. Midgut and salivary gland barriers to Lacrosse virus dissemination in mosquitoes of the Aedes triseriatus group. Medical and Veterinary Entomology, 3, 113–123. [CrossRef] [PubMed] [Google Scholar]
  93. Pauvolid-Corrêa A, Morales M, Levis S, Figueiredo L, Couto-Lima D, Campos Z, Nogueira M, da Silva E, Nogueira R, Schatzmayr H. 2011. Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal. Memórias do Instituto Oswaldo Cruz, 106, 467–474. [CrossRef] [Google Scholar]
  94. Peiris M, Amerasinghe F. 1994. West Nile fever, in Handbook of zoonoses, Beran GW, Steele JH, Editors. 2nd edition, Chemical Rubber Company Press: Boca Raton, Michigan. p. 139–148. [Google Scholar]
  95. Petersen L, Marfin A, Gubler D. 2003. West Nile virus. Journal of the American Medical Association, 290, 524–528. [CrossRef] [PubMed] [Google Scholar]
  96. Petersen LR, Roehrig JT. 2001. West Nile virus: a reemerging global pathogen. Emerging Infectious Diseases, 7, 611–614. [CrossRef] [PubMed] [Google Scholar]
  97. Philip CB, Smadel JE. 1943. Transmission of West Nile virus by infected Aedes albopictus. Proceedings of the Society for Experimental Biology and Medicine, 48, 537–548. [Google Scholar]
  98. Platonov A, Karan L, Shopenskaia TA, Fedorova M, Koliasnikova N, Rusakova N, Shishkina L, Arshba T, Zhuravlev V, Govorukhina M, Valentseva A, Shipulin G. 2011. Genotyping of West Nile fever virus strains circulating in southern Russia as an epidemiological investigation method: principles and results. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, 2, 29–37. [Google Scholar]
  99. Platt K, Tucker B, Halbur P, Tiawsirisup S, Blitvich B, Fabiosa F, Bartholomay L, Rowley W. 2007. West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes. Emerging Infectious Disease, 12, 813–837. [Google Scholar]
  100. Raharimalala FN. 2011. Rôle des moustiques Culicidae, de leurs communautés microbiennes, et des réservoirs vertébrés, dans la transmission d’arbovirus à Madagascar. Thèse, Université Claude Bernard Lyon I (France) et Université d’Antananarivo (Madagascar). p. 186. [Google Scholar]
  101. Raherilalao M, Goodman S. 2011. Histoire naturelle des familles et sous-familles endémiques d’oiseaux de Madagascar. Association Vahatra: Antananarivo. p. 148. [Google Scholar]
  102. Rakotomalala RS, Randriamihangy N, Ntoe Zara A, Andrianarivelo A, Rakoto Alson O, Rasamindrakotroka A. 2015. Malaria in febrile patients at the Center of Maternal and Child Health, Moramanga in 2007–2009. Revue Médicale de Madagascar, 5, 516–519. [Google Scholar]
  103. Rappole J, Derrickson S, Hubálek Z. 2000. Migration and spread of West Nile virus in the Western Hemisphere. Emerging Infectious Diseases, 6, 319–328. [CrossRef] [PubMed] [Google Scholar]
  104. Rappole J, Hubálek Z. 2003. Migratory birds and West Nile virus. Journal of Applied Microbiology, 94, 47S–58S. [CrossRef] [PubMed] [Google Scholar]
  105. Rasamoelina AH, Duboz R, Lancelot R, Maminiaina O, Jourdan M, Rakotondramaro T, Rakotonjanahary S, de Almeida SR, Rakotondravao R, Durand B, Chevalier V. 2014. Description and analysis of the poultry trading network in the Lake Alaotra region, Madagascar: implications for the surveillance and control of Newcastle disease. Acta Tropica, 135, 10–18. [CrossRef] [PubMed] [Google Scholar]
  106. Ravaonjanahary C. 1978. Les Aedes de Madagascar (Diptera-Culicidae). Étude monographique du genre. 2. Biologie d’Aedes (Diceromyia) tiptoni. Travaux et Documents de l’ORSTOM, 87, 1–210. [Google Scholar]
  107. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, Slotman MA. 2011. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malaria Journal, 10, 184. [CrossRef] [PubMed] [Google Scholar]
  108. Reeves WC. 1957. Arthropods as vectors and reservoirs of animal pathogenic viruses, in Handbuch der Virus Forschung, Hallauer C., Meyer KF, Editors. Springer: Vienna, Austria, 4. p. 177–202. [Google Scholar]
  109. Reisen WK, Barker CM, Fang Y, Martinez VM. 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 43, 309–317. [Google Scholar]
  110. Rodhain F. 1991. Le fonctionnement des systèmes virus-vecteurs. Annales de la Société Belge de Médecine Tropicale, 71, 189–199. [Google Scholar]
  111. Roux F, Bejoma B. 2009. Les populations d’oiseaux aquatiques en périphérie d’une ferme de crevetticulture (OSO Farming). Malagasy Nature, 2, 94–110. [Google Scholar]
  112. Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD. 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites and Vectors, 3, 19. [CrossRef] [Google Scholar]
  113. Safford R, Hawkins A. 2013. The birds of Africa. Volume VIII: The Malagasy region. Christopher Helm: London. p. 1024. [Google Scholar]
  114. Sampathkumar P. 2003. West Nile Virus: epidemiology, clinical presentation, diagnosis, and prevention. Mayo Clinic Proceedings, 78, 1137–1144. [CrossRef] [PubMed] [Google Scholar]
  115. Sardelis MR, Turell M, Dohm DJ, O’Guinn ML. 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerging Infectious Diseases, 7, 1018–1022. [CrossRef] [PubMed] [Google Scholar]
  116. Savage HM, Ceianu C, Nicolescu G, Karabatsos N, Lanciotti R, Vladimirescu A, Laiv L, Ungureanu A, Romanca C, Tsai TF. 1999. Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes. The American Journal of Tropical Medicine and Hygiene, 61, 600–611. [PubMed] [Google Scholar]
  117. Sinclair I, Langrand O. 2013. Birds of the Indian Ocean islands. Struik Nature: Cape Town. [Google Scholar]
  118. Sirbu A, Ceianu CS, Panculescu-Gatej RI, Vázquez A, Tenorio A, Rebreanu R, Niedrig M, Nicolescu G, Pistol A. 2011. Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Eurosurveillance, 16, 19762. [Google Scholar]
  119. Smithburn K, Taylor R, Rizk F, Kader A. 1954. Immunity to certain arthropod-borne viruses among indigenous residents of Egypt. The American Journal of Tropical Medicine and Hygiene, 33, 9–18. [Google Scholar]
  120. Smithburn KC, Hughes TP, Burke AW, Paul JH. 1940. A neurotropic virus isolated from the blood of a native of Uganda. The American Journal of Tropical Medicine and Hygiene, 20, 471–492. [Google Scholar]
  121. Suom C, Ginsberg HS, Bernick A, Klein C, Buckley PA, Salvatore C, LeBrun RA. 2009. Host-seeking activity and avian host preferences of mosquitoes associated with West Nile virus transmission in the northeastern U.S.A. Journal of Vector Ecology, 35, 69–74. [CrossRef] [Google Scholar]
  122. Sureau P. 1965. Enquête sérologique sur les arbovirus à Madagascar. Archives de l’Institut Pasteur de Madagascar, 33, 27–65. [Google Scholar]
  123. Takken W, Verhulst NO. 2013. Host preferences of blood-feeding mosquitoes. Annual Review of Entomology, 58, 433–453. [CrossRef] [PubMed] [Google Scholar]
  124. Tantely ML. 2013. Biologie des moustiques vecteurs potentiels du virus de la Fièvre de la Vallée du Rift (FVR) à Madagascar. Thèse de Doctorat de 3ème cycle, Université d’Antananarivo: Madagascar. p. 213. [Google Scholar]
  125. Tantely ML, Boyer S, Fontenille D. 2015. A review of mosquitoes associated with Rift Valley fever virus in Madagascar. The American Journal of Tropical Medicine and Hygiene, 92, 722–729. [CrossRef] [PubMed] [Google Scholar]
  126. Tantely ML, Cêtre-Sossah C, Rakotondranaivo T, Cardinale E, Boyer S. 2016. Population dynamics of mosquito species in a West Nile endemic area in Madagascar. Parasite, in press. [Google Scholar]
  127. Tantely ML, Le Goff G, Boyer S, Fontenille D. 2016. An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar. Parasite, 23, 20. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  128. Tantely ML, Rakotoniaina JC, Andrianaivolambo L, Tata E, Fontenille D, Elissa N. 2012. Modification of distribution of Anopheles gambiae, a malaria vector, at high altitude in Madagascar. Journal of Vector Ecology, 37, 402–406. [CrossRef] [Google Scholar]
  129. Tantely ML, Rakotoniaina JC, Andrianaivolambo L, Tata E, Razafindrasata F, Fontenille D, Elissa N. 2013. Biology of mosquitoes that are potential vectors of Rift Valley fever virus in different biotopes of the Central Highlands of Madagascar. Journal of Medical Entomology, 50, 603–610. [CrossRef] [PubMed] [Google Scholar]
  130. Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, Rutee A, Dehecq J-S, Makoundou P, Labbé P, Pasteur N, Weill M. 2010. Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Réunion Island. Insect Biochemistry and Molecular Biology, 40, 317–324. [CrossRef] [PubMed] [Google Scholar]
  131. Traore-Lamizana M, Zeller HG, Mondo M, Hervy JP, Adam F, Digoutte JP. 1994. Isolations of West Nile and Bagaza viruses from mosquitoes (Diptera: Culicidae) in Central Senegal (Ferlo). Journal of Medical Entomology, 5, 934–938. [CrossRef] [Google Scholar]
  132. Trevejo RT, Eidson M. 2008. West Nile virus. Journal of the American Veterinary Medical Association, 232, 1302–1309. [CrossRef] [PubMed] [Google Scholar]
  133. Turell M, Dohm DJ, Sardelis MR, O’Guinn ML, Andreadis TG, Blow JA. 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical Entomology, 42, 57–62. [CrossRef] [PubMed] [Google Scholar]
  134. Turell M, O’Guinn ML, Dohm DJ, Jones JM. 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. Journal of Medical Entomology, 38, 130–134. [CrossRef] [PubMed] [Google Scholar]
  135. Unlu I, Mackay AJ, Roy A, Yates MM, Foil LD. 2010. Evidence of vertical transmission of West Nile virus in field-collected mosquitoes. Journal of Vector Ecology, 35, 95–99. [CrossRef] [Google Scholar]
  136. van der Meulen KM, Pensaert MB, Nauwynck HJ. 2005. West Nile virus in the vertebrate world. Archives of Virology, 150, 637–657. [CrossRef] [PubMed] [Google Scholar]
  137. Vázquez A, Sánchez-Seco M, Ruiz S, Molero F, Hernández L, Moreno J, Magallanes A, Tejedor C, Tenorio A. 2010. Putative new lineage of West Nile Virus, Spain. Emerging Infectious Diseases, 16, 539–552. [CrossRef] [Google Scholar]
  138. Venter M, Human S, Zaayman D, Gerdes GH, Williams J, Steyl J, Leman PA, Paweska JT, Setzkorn H, Rous G, Murray S, Parker R, Donnellan C, Swanepoel R. 2009. Lineage 2 West Nile virus as cause of fatal neurologic disease in horses, South Africa. Emerging Infectious Diseases, 15, 877–884. [CrossRef] [PubMed] [Google Scholar]
  139. Walther B. 2004. List of western Palearctic bird species migrating within Africa. Available from http://www.zmuc.dk/verweb/staff/bawalther/migratoryBirdsList.htm. [Google Scholar]
  140. Weaver SC, Barrett DT. 2004. Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews Microbiology, 2, 789–801. [CrossRef] [PubMed] [Google Scholar]
  141. WHO. 1988. Lutte contre les vecteurs et les nuisibles en milieu urbain. Organization Mondiale de la Santé, série de rapports techniques, 767, 1–85. [Google Scholar]
  142. Winters AM, Bolling BG, Beaty BJ, Blair CD, Eisen RJ, Meyer AM, Pape WJ, Moore CG, Eisen L. 2008. Combining mosquito vector and human disease data for improved assessment of spatial West Nile virus disease risk. The American Journal of Tropical Medicine and Hygiene, 78, 654–665. [PubMed] [Google Scholar]
  143. Young HG. 2003. Freshwater Birds, in The natural history of Madagascar. Goodman SM, Benstead J-P, Editors. University of Chicago Press: Chicago, Illinois. p. 1071–1077. [Google Scholar]
  144. Zimmerman D, Turner D, Pearson D. 1996. Birds of Kenya and northern Tanzania. Princeton University Press: Princeton. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.