Open Access
Issue
Parasite
Volume 21, 2014
Article Number 25
Number of page(s) 6
DOI https://doi.org/10.1051/parasite/2014027
Published online 04 June 2014
  1. Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP, Gradoni L, Ter Horst R, Lopez-Velez R, Moreno J. 2008. The relationship between leishmaniasis and AIDS: the second 10 years. Clinical Microbiology Reviews, 21, 334–359. [CrossRef] [PubMed] [Google Scholar]
  2. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, the WHO Leishmaniasis Control Team. 2012. Leishmaniasis worldwide and global estimates of its incidence. PloS One, 7, e35671. [Google Scholar]
  3. Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC. 2011. Morphological events during the cell cycle of Leishmania major. Eukaryotic Cell, 10, 1429–1438. [CrossRef] [PubMed] [Google Scholar]
  4. Bhandari V, Sundar S, Dujardin JC, Salotra P. 2014. Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrobial Agents and Chemotherapy, 58, 2580–2585. [CrossRef] [PubMed] [Google Scholar]
  5. Borthwick EB, Zeke T, Prescott AR, Cohen PT. 2001. Nuclear localization of protein phosphatase 5 is dependent on the carboxy-terminal region. FEBS Letters, 491, 279–284. [CrossRef] [PubMed] [Google Scholar]
  6. Chaudhuri M. 2001. Cloning and characterization of a novel serine/threonine protein phosphatase type 5 from Trypanosoma brucei. Gene, 266, 1–13. [CrossRef] [PubMed] [Google Scholar]
  7. Chen MS, Silverstein AM, Pratt WB, Chinkers M. 1996. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. Journal of Biological Chemistry, 271, 32315–32320. [CrossRef] [Google Scholar]
  8. Chinkers M. 2001. Protein phosphatase 5 in signal transduction. Trends in Endocrinology and Metabolism, 12, 28–32. [CrossRef] [Google Scholar]
  9. Erdmann M, Scholz A, Melzer IM, Schmetz C, Wiese M. 2006. Interacting protein kinases involved in the regulation of flagellar length. Molecular Biology of the Cell, 17, 2035–2045. [CrossRef] [PubMed] [Google Scholar]
  10. Garcia-Hernandez R, Manzano JI, Castanys S, Gamarro F. 2012. Leishmania donovani develops resistance to drug combinations. PLoS Neglected Tropical Diseases, 6, e1974. [CrossRef] [PubMed] [Google Scholar]
  11. Hunter T. 2000. Signaling – 2000 and beyond. Cell, 100, 113–127. [CrossRef] [PubMed] [Google Scholar]
  12. Jones C, Anderson S, Singha UK, Chaudhuri M. 2008. Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei. Parasitology Research, 102, 835–844. [CrossRef] [PubMed] [Google Scholar]
  13. Kang H, Sayner SL, Gross KL, Russell LC, Chinkers M. 2001. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry, 40, 10485–10490. [CrossRef] [PubMed] [Google Scholar]
  14. McConville MJ, Naderer T. 2011. Metabolic pathways required for the intracellular survival of Leishmania. Annual Review of Microbiology, 65, 543–561. [CrossRef] [PubMed] [Google Scholar]
  15. Morales MA, Watanabe R, Dacher M, Chafey P, Osorio y Fortea J, Scott DA, Beverley SM, Ommen G, Clos J, Hem S, Lenormand P, Rousselle JC, Namane A, Spath GF. 2010. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proceedings of the National Academy of Sciences of the United States of America, 107, 8381–8386. [CrossRef] [PubMed] [Google Scholar]
  16. Swingle MR, Honkanen RE, Ciszak EM. 2004. Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5. Journal of Biological Chemistry, 279, 33992–33999. [CrossRef] [Google Scholar]
  17. Szoor B. 2010. Trypanosomatid protein phosphatases. Molecular and Biochemical Parasitology, 173, 53–63. [CrossRef] [PubMed] [Google Scholar]
  18. Szoor B, Dyer NA, Ruberto I, Acosta-Serrano A, Matthews KR. 2013. Independent pathways can transduce the life-cycle differentiation signal in Trypanosoma brucei. PLoS Pathogens, 9, e1003689. [CrossRef] [PubMed] [Google Scholar]
  19. Szoor B, Ruberto I, Burchmore R, Matthews KR. 2010. A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes & Development, 24, 1306–1316. [CrossRef] [PubMed] [Google Scholar]
  20. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189–1191. [CrossRef] [PubMed] [Google Scholar]
  21. Wiese M. 1998. A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO Journal, 17, 2619–2628. [CrossRef] [Google Scholar]
  22. Wiese M. 2007. Leishmania MAP kinases – Familiar proteins in an unusual context. International Journal for Parasitology, 37, 1053–1062. [CrossRef] [PubMed] [Google Scholar]
  23. Wiese M, Kuhn D, Grunfelder CG. 2003. Protein kinase involved in flagellar-length control. Eukaryotic Cell, 2, 769–777. [CrossRef] [PubMed] [Google Scholar]
  24. Zilberstein D, Shapira M. 1994. The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology, 48, 449–470. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.