Open Access
Volume 21, 2014
Article Number 7
Number of page(s) 7
Published online 19 February 2014
  1. Báez-Camargo M, Gharaibeh R, Riverón AM, de la Cruz Hernández F, Luna JP, Gariglio P, Chávez P, Orozco E. 1996. Gene amplification in Entamoeba histolytica. Invasion and Metastasis, 16, 269–279. [Google Scholar]
  2. Balakrishnan K, Krishnan NM, Kulkarni A, Rao BJ. 2009. Human Rad51 mediated DNA unwinding is facilitated by conditions that favour Rad51-dsDNA aggregation. BMC Biochemistry, 10, 1–15. [CrossRef] [PubMed] [Google Scholar]
  3. Bugreev DV, Mazina OM, Mazin AV. 2009. Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism. Journal of Biological Chemistry, 39, 26349–26359. [CrossRef] [Google Scholar]
  4. Ceballos SJ, Heyer WD. 2011. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochimica et Biophysica Acta, 1809, 509–523. [CrossRef] [PubMed] [Google Scholar]
  5. Charcas-Lopez MaS, Orozco E, Marchat LA, Lopez-Camarillo C. 2013. Comparative genomics for the identification of ReCQ DNA helicases in protozoan parasites, in Comparative Genomics in Human Neglected Parasites, Marchat LA, López Camarillo C, Eds. Nova Science Publishers Inc, New York, pp. 135–155. [Google Scholar]
  6. Clever B, Interthal H, Schmuckli-Maurer J, King J, Sigrist M, Heyer WD. 1997. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO Journal, 16, 2535–2544. [CrossRef] [Google Scholar]
  7. Diamond LS, Harlow DR, Cunnick CC. 1978. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72, 431–432. [CrossRef] [PubMed] [Google Scholar]
  8. Durr H, Korner C, Muller M, Hickmann V, Hopfner KP. 2005. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell, 121, 363–373. [CrossRef] [PubMed] [Google Scholar]
  9. Eisen JA, Sweder KS, Hanawalt PC. 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Research, 23, 2715–2723. [CrossRef] [PubMed] [Google Scholar]
  10. Gorbalenya AE, Koonin EV. 1993. Helicases – amino acid sequence comparisons and structure function relationships. Current Opinion in Structural Biology, 3, 419–429. [CrossRef] [Google Scholar]
  11. Karow JK, Chakraverty RK, Hickson ID. 1997. The Bloom’s syndrome gene product is a 3′-5′ DNA helicase. Journal of Biological Chemistry, 272, 30611–30614. [CrossRef] [Google Scholar]
  12. Karow JK, Constantinou A, Li JL, West SC, Hickson ID. 2000. The Bloom’s syndrome gene product promotes branch migration of Holliday junctions. Proceedings of the National Academy of Sciences of the United States of America, 97, 6504–6508. [CrossRef] [PubMed] [Google Scholar]
  13. Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annual Review of Genetics, 38, 233–271. [CrossRef] [PubMed] [Google Scholar]
  14. Lopez-Casamichana M, Orozco E, Marchat LA, López-Camarillo C. 2008. Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica. BMC Molecular Biology, 9, 35. [CrossRef] [PubMed] [Google Scholar]
  15. Marchat LA, Pezet-Valdez M, Lopez-Camarillo C, Orozco E. 2003. Entamoeba histolytica: expression and DNA binding of CCAAT/enhancer-binding proteins are regulated through the cell cycle. Experimental Parasitology, 103, 82–87. [CrossRef] [PubMed] [Google Scholar]
  16. Moynahan ME, Jasin M. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Reviews Molecular Cell Biology, 11, 196–207. [CrossRef] [PubMed] [Google Scholar]
  17. Orozco E, de la Cruz HF, Rodriguez MA. 1985. Isolation and characterization of Entamoeba histolytica mutants resistant to emetine. Molecular and Biochemical Parasitology, 15, 49–59. [CrossRef] [PubMed] [Google Scholar]
  18. Ouyang KJ, Woo LL, Ellis NA. 2008. Homologous recombination and maintenance of genome integrity: cancer and aging through the prism of human RecQ helicases. Mechanisms of Ageing and Development, 129, 425–440. [CrossRef] [PubMed] [Google Scholar]
  19. Schreiber E, Matthias P, Müller MM, Schaffner W. 1989. Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells. Nucleic Acids Research, 17, 6419. [CrossRef] [PubMed] [Google Scholar]
  20. Sharma S, Doherty KM, Brosh RM Jr. 2006. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochemical Journal, 398, 319–337. [CrossRef] [Google Scholar]
  21. Srivastava V, Modi P, Tripathi P, Mudgal R, De Siddharth, Sengupta S. 2009. BLM helicase stimulates the ATPase and chromatin remodeling activities of RAD54. Journal of Cell Science, 122, 3093–3103. [CrossRef] [PubMed] [Google Scholar]
  22. Sung P, Krejci L, Van Komen S, Sehorn MG. 2003. Rad51 recombinase and recombination mediators. Journal of Biological Chemistry, 278, 42729–42732. [CrossRef] [Google Scholar]
  23. Sung P, Robberson DL. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell, 82, 453–461. [CrossRef] [PubMed] [Google Scholar]
  24. Tan TL, Kanaar R, Wyman C. 2003. Rad54, a jack of all trades in homologous recombination. DNA Repair, 2, 787–794. [CrossRef] [PubMed] [Google Scholar]
  25. Thacker J. 2005. The RAD51 gene family, genetic instability and cancer. Cancer Letters, 219, 125–135. [CrossRef] [PubMed] [Google Scholar]
  26. Thoma NH, Czyzewski BK, Alexeev AA, Mazin AV, Kowalczykowski SC, Pavletich NP. 2005. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nature Structural & Molecular Biology, 12, 350–356. [CrossRef] [PubMed] [Google Scholar]
  27. Vassilios A, Lusser A, Kadonaga JT. 2004. A conserved N-terminal motif in Rad54 is important for chromatin remodeling and homologous strand pairing. Journal of Biological Chemistry, 279, 27824–27829. [CrossRef] [Google Scholar]
  28. Weber C, Marchat LA, Guillen N, López-Camarillo C. 2009. Effects of DNA damage induced by UV irradiation on gene expression in the protozoan parasite Entamoeba histolytica. Molecular and Biochemical Parasitology, 164, 165–169. [CrossRef] [PubMed] [Google Scholar]
  29. WHO. WHO/PAHO/UNESCO report. 1997. A consultation with experts on amoebiasis. Mexico City, Mexico 28–29 January, 1997. Epidemiology Bulletin, 1997(18), 13–14. [Google Scholar]
  30. Wu L, Davies SL, Levitt NC, Hickson ID. 2001. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. Journal of Biological Chemistry, 276, 19375–19381. [CrossRef] [Google Scholar]
  31. Wyman C, Kanaar R. 2006. DNA double-strand break repair: all’s well that ends well. Annual Review of Genetics, 40, 363–383. [CrossRef] [PubMed] [Google Scholar]
  32. Zaki M, Meelu P, Sun W, Clark CG. 2002. Simultaneous differentiation and typing of Entamoeba histolytica and Entamoeba dispar. Journal of Clinical Microbiology, 40, 1271–1276. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.