Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Genomic Insight of Leishmania Parasite: In-Depth Review of Drug Resistance Mechanisms and Genetic Mutations

Krupanshi Bharadava, Tarun Kumar Upadhyay, Radhey Shyam Kaushal, Irfan Ahmad, Yasser Alraey, Samra Siddiqui and Mohd Saeed
ACS Omega (2024)
https://doi.org/10.1021/acsomega.3c09400

Evaluation of the inhibitory effects of sitamaquine on Babesia infections

Dongxue Ma, Karuna Sekiguchi, Eloiza May Galon, Mingming Liu, Shengwei Ji and Xuenan Xuan
Parasitology International 103 102941 (2024)
https://doi.org/10.1016/j.parint.2024.102941

Evolution of the Quinoline Scaffold for the Treatment of Leishmaniasis: A Structural Perspective

Carlos F. M. Silva, Diana C. G. A. Pinto, Pedro A. Fernandes and Artur M. S. Silva
Pharmaceuticals 17 (3) 285 (2024)
https://doi.org/10.3390/ph17030285

Exploration of Synthetic Potential of Quinoline‐3‐Carbaldehydes

Vipin Kumar, Shubham Sharma, Vaishali, Dharmender Singh, Chandi C. Malakar and Virender Singh
European Journal of Organic Chemistry (2024)
https://doi.org/10.1002/ejoc.202400456

A review on new natural and synthetic anti-leishmanial chemotherapeutic agents and current perspective of treatment approaches.

Nilanjana Majumder, Antara Banerjee and Samiran Saha
Acta Tropica 240 106846 (2023)
https://doi.org/10.1016/j.actatropica.2023.106846

Diarylpentanoids, the privileged scaffolds in antimalarial and anti‐infectives drug discovery: A review

Amirah H. Ramli and Siti M. Mohd Faudzi
Archiv der Pharmazie 356 (12) (2023)
https://doi.org/10.1002/ardp.202300391

Quinolinyl β-enaminone derivatives exhibit leishmanicidal activity against Leishmania donovani by impairing the mitochondrial electron transport chain complex and inducing ROS-mediated programmed cell death

Ankita Rani, Shilpika Khanikar, Mukul Dutta, et al.
Journal of Antimicrobial Chemotherapy 78 (2) 359 (2023)
https://doi.org/10.1093/jac/dkac395

Immunotherapy and immunochemotherapy in combating visceral leishmaniasis

Ganesh Yadagiri, Aakriti Singh, Kanika Arora and Shyam Lal Mudavath
Frontiers in Medicine 10 (2023)
https://doi.org/10.3389/fmed.2023.1096458

Discovery of 2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one derivatives as possible antileishmanial agents

Anuradha Seth, Anirban Ghoshal, Varun Dewaker, et al.
RSC Medicinal Chemistry 13 (6) 746 (2022)
https://doi.org/10.1039/D2MD00078D

Evolution of Acridines and Xanthenes as a Core Structure for the Development of Antileishmanial Agents

Carlos F. M. Silva, Diana C. G. A. Pinto, Pedro A. Fernandes and Artur M. S. Silva
Pharmaceuticals 15 (2) 148 (2022)
https://doi.org/10.3390/ph15020148

Antiprotozoal agents: How have they changed over a decade?

Vitória de Souza Fernandes, Rafael da Rosa, Lara A. Zimmermann, Kamilla R. Rogério, Arthur E. Kümmerle, Lilian S. C. Bernardes and Cedric S. Graebin
Archiv der Pharmazie 355 (2) (2022)
https://doi.org/10.1002/ardp.202100338

Current leishmaniasis drug discovery

Alessandra Campbell Pinheiro and Marcus Vinícius Nora de Souza
RSC Medicinal Chemistry 13 (9) 1029 (2022)
https://doi.org/10.1039/D1MD00362C

The Potential of 2-Substituted Quinolines as Antileishmanial Drug Candidates

Philippe M. Loiseau, Kaluvu Balaraman, Gillian Barratt, Sébastien Pomel, Rémy Durand, Frédéric Frézard and Bruno Figadère
Molecules 27 (7) 2313 (2022)
https://doi.org/10.3390/molecules27072313

In vitro evaluation and in vivo efficacy of nitroimidazole-sulfanyl ethyl derivatives against Leishmania (V.) braziliensis and Leishmania (L.) mexicana

Zuleima Blanco, Michael R. Mijares, Hegira Ramírez, et al.
Parasitology Research 120 (9) 3307 (2021)
https://doi.org/10.1007/s00436-021-07266-w

Overcoming multi‐resistant leishmania treatment by nanoencapsulation of potent antimicrobials

Simone SC Oliveira, Carine S Ferreira, Marta H Branquinha, André LS Santos, Marco V Chaud, Sona Jain, Juliana C Cardoso, Anđelka B Kovačević, Eliana B Souto and Patrícia Severino
Journal of Chemical Technology & Biotechnology 96 (8) 2123 (2021)
https://doi.org/10.1002/jctb.6633

Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents

Iratxe Barbolla, Leidi Hernández-Suárez, Viviana Quevedo-Tumailli, et al.
European Journal of Medicinal Chemistry 220 113458 (2021)
https://doi.org/10.1016/j.ejmech.2021.113458

Progress in the Chemistry of Organic Natural Products 115

Jiří Pospíšil, Daniela Konrádová and Miroslav Strnad
Progress in the Chemistry of Organic Natural Products, Progress in the Chemistry of Organic Natural Products 115 115 115 (2021)
https://doi.org/10.1007/978-3-030-64853-4_3

Quinoline-based Compounds as Key Candidates to Tackle Drug Discovery Programs of Microbicidal Agents

Aline N. Silva da Gama and Maria N.C. Soeiro
Current Pharmaceutical Design 27 (15) 1757 (2021)
https://doi.org/10.2174/1381612826666201006125644

Biological Evaluation and Mechanistic Studies of Quinolin-(1 H )-Imines as a New Chemotype against Leishmaniasis

Ana Georgina Gomes-Alves, Margarida Duarte, Tânia Cruz, et al.
Antimicrobial Agents and Chemotherapy 65 (7) (2021)
https://doi.org/10.1128/AAC.01513-20

Pre-clinical evidences of the antileishmanial effects of diselenides and selenocyanates

Pablo Garnica, Mikel Etxebeste-Mitxeltorena, Daniel Plano, et al.
Bioorganic & Medicinal Chemistry Letters 30 (17) 127371 (2020)
https://doi.org/10.1016/j.bmcl.2020.127371

Synthesis and leishmanicidal evaluation of sulfanyl‐ and sulfonyl‐tethered functionalized benzoate derivatives featuring a nitroimidazole moiety

Miguel Rodríguez, Joyce Gutiérrez, José Domínguez, Philippe A. Peixoto, Alexis Fernández, Noris Rodríguez, Denis Deffieux, Luis Rojas, Stéphane Quideau, Laurent Pouységu and Jaime Charris
Archiv der Pharmazie 353 (5) (2020)
https://doi.org/10.1002/ardp.202000002

Review on natural products as an alternative to contemporary anti-leishmanial therapeutics

Shweta Raj, Santanu Sasidharan, S. N. Balaji, Vikash Kumar Dubey and Prakash Saudagar
Journal of Proteins and Proteomics 11 (2) 135 (2020)
https://doi.org/10.1007/s42485-020-00035-w

Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review

Soraya Silva Santos, Renan Vinicius de Araújo, Jeanine Giarolla, Omar El Seoud and Elizabeth Igne Ferreira
International Journal of Antimicrobial Agents 55 (4) 105906 (2020)
https://doi.org/10.1016/j.ijantimicag.2020.105906

Nanotechnology in Skin, Soft Tissue, and Bone Infections

Marco Vinicius Chaud, Venâncio Alves Amaral, Fernando Batain, et al.
Nanotechnology in Skin, Soft Tissue, and Bone Infections 183 (2020)
https://doi.org/10.1007/978-3-030-35147-2_11

Synthesis, Characterization, and Antileishmanial Activity of Certain Quinoline-4-carboxylic Acids

Mazin A. S. Abdelwahid, Tilal Elsaman, Malik S. Mohamed, et al.
Journal of Chemistry 2019 1 (2019)
https://doi.org/10.1155/2019/2859637

Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems

Eliana B. Souto, João Dias-Ferreira, Sara A. Craveiro, Patrícia Severino, Elena Sanchez-Lopez, Maria L. Garcia, Amélia M. Silva, Selma B. Souto and Sheefali Mahant
Pathogens 8 (3) 119 (2019)
https://doi.org/10.3390/pathogens8030119

Enhancing the copy number of Ldrab6 gene in Leishmania donovani parasites mediates drug resistance through drug‐thiol conjugate dependent multidrug resistance protein A (MRPA)

Indira Singh Chauhan, G. Subba Rao and Neeloo Singh
Acta Tropica 199 105158 (2019)
https://doi.org/10.1016/j.actatropica.2019.105158

Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4-aminostyrylquinoline scaffold

Matteo Staderini, Marta Piquero, María Ángeles Abengózar, et al.
European Journal of Medicinal Chemistry 171 38 (2019)
https://doi.org/10.1016/j.ejmech.2019.03.007

Exploiting knowledge on pharmacodynamics-pharmacokinetics for accelerated anti-leishmanial drug discovery/development

Shyam Sundar, Neha Agrawal and Bhawana Singh
Expert Opinion on Drug Metabolism & Toxicology 15 (7) 595 (2019)
https://doi.org/10.1080/17425255.2019.1629417

Discovery and Development of Therapeutics from Natural Products Against Neglected Tropical Diseases

Vladimir V. Kouznetsov, Carlos M. Meléndez Gómez, José Luis Valencia Peña and Leonor Y. Vargas-Méndez
Discovery and Development of Therapeutics from Natural Products Against Neglected Tropical Diseases 87 (2019)
https://doi.org/10.1016/B978-0-12-815723-7.00004-3

Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents

Santiago N. Chanquia, Facundo Larregui, Vanesa Puente, et al.
Bioorganic Chemistry 83 526 (2019)
https://doi.org/10.1016/j.bioorg.2018.10.053

The alkylaminoalkanethiosulfuric acids exhibit in-vitro antileishmanial activity against Leishmania (Viannia) braziliensis: a new perspective for use of these schistosomicidal agents

Gabriane Nascimento Porcino, Luciana Maria Ribeiro Antinarelli, Ana Carolina Ribeiro Gomes Maia, et al.
Journal of Pharmacy and Pharmacology 71 (12) 1784 (2019)
https://doi.org/10.1111/jphp.13163

Synthesis, Biological Evaluation, Structure–Activity Relationship, and Mechanism of Action Studies of Quinoline–Metronidazole Derivatives Against Experimental Visceral Leishmaniasis

Akanksha Upadhyay, Pragya Chandrakar, Sampa Gupta, et al.
Journal of Medicinal Chemistry 62 (11) 5655 (2019)
https://doi.org/10.1021/acs.jmedchem.9b00628

Targeting Pteridine Reductase 1 and Dihydrofolate Reductase: The Old is a New Trend for Leishmaniasis Drug Discovery

Gustavo Machado das Neves, Luciano P Kagami, Itamar L Gonçalves and Vera L Eifler-Lima
Future Medicinal Chemistry 11 (16) 2107 (2019)
https://doi.org/10.4155/fmc-2018-0512

Cinnamic Acid Conjugates in the Rescuing and Repurposing of Classical Antimalarial Drugs

Ana Teresa Silva, Clara M. Bento, Ana C. Pena, Luísa M. Figueiredo, Cristina Prudêncio, Luísa Aguiar, Tânia Silva, Ricardo Ferraz, Maria Salomé Gomes, Cátia Teixeira and Paula Gomes
Molecules 25 (1) 66 (2019)
https://doi.org/10.3390/molecules25010066

Neglected Diseases: Extensive Space for Modern Drug Discovery

Chiara Borsari, Antonio Quotadamo, Stefania Ferrari, et al.
Annual Reports in Medicinal Chemistry, Neglected Diseases: Extensive Space for Modern Drug Discovery 51 39 (2018)
https://doi.org/10.1016/bs.armc.2018.08.002

Antileishmanial activity of a 4-hydrazinoquinoline derivative: Induction of autophagy and apoptosis-related processes and effectiveness in experimental cutaneous leishmaniasis

Luciana Maria Ribeiro Antinarelli, Isabela de Oliveira Souza, Priscila Vanessa Zabala Capriles, et al.
Experimental Parasitology 195 78 (2018)
https://doi.org/10.1016/j.exppara.2018.10.007

Novel Aminoquinoline Derivatives Significantly Reduce Parasite Load in Leishmania infantum Infected Mice

Jelena Konstantinović, Milica Videnović, Stefania Orsini, et al.
ACS Medicinal Chemistry Letters 9 (7) 629 (2018)
https://doi.org/10.1021/acsmedchemlett.8b00053

An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy

Saeed Emami, Pegah Tavangar and Masoud Keighobadi
European Journal of Medicinal Chemistry 135 241 (2017)
https://doi.org/10.1016/j.ejmech.2017.04.044

Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need

Mark C. Field, David Horn, Alan H. Fairlamb, et al.
Nature Reviews Microbiology 15 (4) 217 (2017)
https://doi.org/10.1038/nrmicro.2016.193

Polyamine-based analogs and conjugates as antikinetoplastid agents

Elodie Jagu, Sébastien Pomel, Stéphanie Pethe, Philippe M. Loiseau and Raphaël Labruère
European Journal of Medicinal Chemistry 139 982 (2017)
https://doi.org/10.1016/j.ejmech.2017.08.014

Library of Seleno-Compounds as Novel Agents against Leishmania Species

Álvaro Martín-Montes, Daniel Plano, Rubén Martín-Escolano, et al.
Antimicrobial Agents and Chemotherapy 61 (6) (2017)
https://doi.org/10.1128/AAC.02546-16

In vitro antileishmanial activity of aza-scorpiand macrocycles. Inhibition of the antioxidant enzyme iron superoxide dismutase

Clotilde Marín, Mario Inclán, Inmaculada Ramírez-Macías, et al.
RSC Advances 6 (21) 17446 (2016)
https://doi.org/10.1039/C5RA21262F

Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis

Luciana Maria Ribeiro Antinarelli, Isabela de Oliveira Souza, Nicolas Glanzmann, et al.
Experimental Parasitology 171 10 (2016)
https://doi.org/10.1016/j.exppara.2016.10.009

Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents

Ylenia Baquedano, Verónica Alcolea, Miguel Ángel Toro, et al.
Antimicrobial Agents and Chemotherapy 60 (6) 3802 (2016)
https://doi.org/10.1128/AAC.02529-15

Zinc(II)-Dipicolylamine Coordination Complexes as Targeting and Chemotherapeutic Agents for Leishmania major

Douglas R. Rice, Paola Vacchina, Brianna Norris-Mullins, Miguel A. Morales and Bradley D. Smith
Antimicrobial Agents and Chemotherapy 60 (5) 2932 (2016)
https://doi.org/10.1128/AAC.00410-16

Eliminating the Neglected Tropical Diseases: Translational Science and New Technologies

Peter J. Hotez, Bernard Pecoul, Suman Rijal, et al.
PLOS Neglected Tropical Diseases 10 (3) e0003895 (2016)
https://doi.org/10.1371/journal.pntd.0003895

The Dialogue of the Host-Parasite Relationship:Leishmaniaspp. andTrypanosoma cruziInfection

Carlos Gustavo Vieira de Morais, Ana Karina Castro Lima, Rodrigo Terra, et al.
BioMed Research International 2015 1 (2015)
https://doi.org/10.1155/2015/324915

Antileishmanial pharmacomodulation in 8-nitroquinolin-2(1H)-one series

Charline Kieffer, Anita Cohen, Pierre Verhaeghe, et al.
Bioorganic & Medicinal Chemistry 23 (10) 2377 (2015)
https://doi.org/10.1016/j.bmc.2015.03.064

Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning

Marcel Kaiser, Pascal Mäser, Leela Pavan Tadoori, et al.
PLOS ONE 10 (8) e0135556 (2015)
https://doi.org/10.1371/journal.pone.0135556

4‐Aminoquinoline Derivatives as Potential Antileishmanial Agents

Luciana M. R. Antinarelli, Rafael M. P. Dias, Isabela O. Souza, Wallace P. Lima, Jacy Gameiro, Adilson D. da Silva and Elaine S. Coimbra
Chemical Biology & Drug Design 86 (4) 704 (2015)
https://doi.org/10.1111/cbdd.12540

Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis

M. SÁNCHEZ-MORENO, F. GÓMEZ-CONTRERAS, P. NAVARRO, et al.
Parasitology 142 (8) 1115 (2015)
https://doi.org/10.1017/S0031182015000219

Finding of leishmanicidal activity of 14-hydroxylunularin in mice experimentally infected with Leishmania infantum

Ma. Elva Serna, Marisel Maldonado, Susana Torres, et al.
Parasitology International 64 (5) 295 (2015)
https://doi.org/10.1016/j.parint.2015.03.005

Natural product based leads to fight against leishmaniasis

Nisha Singh, Bhuwan B. Mishra, Surabhi Bajpai, Rakesh K. Singh and Vinod K. Tiwari
Bioorganic & Medicinal Chemistry 22 (1) 18 (2014)
https://doi.org/10.1016/j.bmc.2013.11.048

Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity

Rosemary Rochford, Colin Ohrt, Paul C. Baresel, et al.
Proceedings of the National Academy of Sciences 110 (43) 17486 (2013)
https://doi.org/10.1073/pnas.1310402110

Developments in diagnosis and treatment of visceral leishmaniasis during the last decade and future prospects

Sarfaraz Ahmad Ejazi and Nahid Ali
Expert Review of Anti-infective Therapy 11 (1) 79 (2013)
https://doi.org/10.1586/eri.12.148

Anti-leishmanial evaluation of C2-aryl quinolines: Mechanistic insight on bioenergetics and sterol biosynthetic pathway of Leishmania braziliensis

Daznia Bompart, Jorge Núñez-Durán, Daniel Rodríguez, et al.
Bioorganic & Medicinal Chemistry 21 (14) 4426 (2013)
https://doi.org/10.1016/j.bmc.2013.04.063

Topical Treatment Modalities for Old World Cutaneous Leishmaniasis: A Review

R. Alavi-Naini, Asghar Fazaeli and T. O'Dempsey
Prague Medical Report 113 (2) 105 (2012)
https://doi.org/10.14712/23362936.2015.26

Peptidomimetic and Organometallic Derivatives of Primaquine Active against Leishmania infantum

Sílvia Vale-Costa, Nuno Vale, Joana Matos, et al.
Antimicrobial Agents and Chemotherapy 56 (11) 5774 (2012)
https://doi.org/10.1128/AAC.00873-12

Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

Carolina Piña-Vázquez, Magda Reyes-López, Guillermo Ortíz-Estrada, Mireya de la Garza and Jesús Serrano-Luna
Journal of Parasitology Research 2012 1 (2012)
https://doi.org/10.1155/2012/748206