Open Access
Issue
Parasite
Volume 32, 2025
Article Number 24
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2025019
Published online 09 April 2025
  1. Beaver PC. 1962. Toxocarosis (visceral larva migrans) in relation to tropical eosinophilia. Bulletin de la Société de Pathologie Exotique, 55, 555–576. [Google Scholar]
  2. Bocharova O, Pandit NP, Molesworth K, Fisher A, Mychko O, Makarava N, Baskakov IV. 2021. Alzheimer’s disease-associated β-amyloid does not protect against herpes simplex virus 1 infection in the mouse brain. Journal of Biological Chemistry, 297, 100845. [CrossRef] [Google Scholar]
  3. Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fülöp T. 2015. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 16, 85–98. [CrossRef] [PubMed] [Google Scholar]
  4. Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fülöp T. 2016. Protective effect of Amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model. Journal of Alzheimer’s Disease, 50, 1227–1241. [CrossRef] [Google Scholar]
  5. Bowman DD, Mika-Grieve M, Grieve RB. 1987. Circulating excretory-secretory antigen levels and specific antibody responses in mice infected with Toxocara canis. American Journal of Tropical Medicine and Hygiene, 36, 75–82. [CrossRef] [PubMed] [Google Scholar]
  6. Bowman DD, Oaks JA, Grieve RB. 1993. Infrastructure of the infective-stage larva of Toxocara canis (Nematoda:Ascaridoidea). Journal of the Helminthological Society of Washington, 60, 183–204. [Google Scholar]
  7. Brill R, Churg J, Beaver PC. 1953. Allergic granulomatosis associated with visceral larva migrans; case report with autopsy findings on Toxocara infection in a child. American Journal of Clinical Pathology, 23, 1208–1215. [CrossRef] [PubMed] [Google Scholar]
  8. Burren CH. 1971. The distribution of Toxocara larvae in the central nervous system of the mouse. Transactions of the Royal Society of Tropical Medicine and Hygiene, 65, 450–453. [CrossRef] [PubMed] [Google Scholar]
  9. Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. 2017. Dissecting amyloid beta deposition using distinct strains of the neurotropic parasite Toxoplasma gondii as a novel tool. ASN Neuro, 9, 175909141772491. [CrossRef] [Google Scholar]
  10. Chou CM, Lee YL, Liao CW, Huang YC, Fan CK. 2017. Enhanced expressions of neurodegeneration-associated factors, UPS impairment, and excess Aβ accumulation in the hippocampus of mice with persistent cerebral toxocariasis. Parasites & Vectors, 10, 620. [CrossRef] [PubMed] [Google Scholar]
  11. Ciudad S, Puig E, Botzanowski T, Meigooni M, Arango AS, Do J, Mayzel M, Bayoumi M, Chaignepain S, Maglia G, Cianferani S, Orekhov V, Tajkhorshid E, Bardiaux B, Carulla N. 2020. Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nature Communications, 11, 3014. [CrossRef] [PubMed] [Google Scholar]
  12. da Silva MB, Urrego JRA, Oviedo Y, Cooper PJ, Pacheco LGC, Pinheiro CS, Ferreira F, Briza P, Alcantara-Neves NM. 2018. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Veterinary Parasitology, 259, 25–34. [CrossRef] [PubMed] [Google Scholar]
  13. De Chiara G, Piacentini R, Fabiani M, Mastrodonato A, Marcocci ME, Limongi D, Napoletani G, Protto V, Coluccio P, Celestino I, Li Puma DD, Grassi C, Palamara AT. 2019. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathogens, 15, e1007617. [CrossRef] [PubMed] [Google Scholar]
  14. De Savigny DH, Voller A, Woodruff AW. 1979. Toxocariasis: Serological diagnosis by enzyme immunoassay. Journal of Clinical Pathology, 32, 284–288. [CrossRef] [PubMed] [Google Scholar]
  15. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, Holsinger LJ, Arastu-Kapur S, Kaba S, Lee A, Ryder MI, Potempa B, Mydel P, Hellvard A, Adamowicz K, Hasturk H, Walker GD, Reynolds EC, Maull RLM, Curtis MA, Dragunow M, Potempa J. 2019. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 5, eaau3333. [CrossRef] [PubMed] [Google Scholar]
  16. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, György B, Breakefield XO, Tanzi RE, Moir RD. 2018. Alzheimer’s disease-associated β-amyloid is rapidly seeded by Herpesviridae to protect against brain infection. Neuron, 99, 56–63.e3. [CrossRef] [PubMed] [Google Scholar]
  17. Fairbairn D. 1961. The in vitro hatching of Ascaris lumbricoides eggs. Canadian Journal of Zoology, 39, 153–162. [CrossRef] [Google Scholar]
  18. Fan CK, Holland CV, Loxton K, Barghouth U. 2015. Cerebral toxocariasis: Silent progression to neurodegenerative disorders? Clinical Microbiology Reviews, 28, 663–686. [CrossRef] [PubMed] [Google Scholar]
  19. Finnie GS, Gunnarsson R, Manavis J, Blumbergs PC, Mander KA, Edwards S, Van den Heuvel C, Finnie JW. 2017. Characterization of an “Amyloid only” transgenic (B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/Mmjax) mouse model of Alzheimer’s disease. Journal of Comparative Pathology, 156, 389–399. [CrossRef] [PubMed] [Google Scholar]
  20. Gosztyla ML, Brothers HM, Robinson SR. 2018. Alzheimer’s amyloid-β is an antimicrobial peptide: A review of the evidence. Journal of Alzheimer’s Disease, 62, 1495–1506. [CrossRef] [PubMed] [Google Scholar]
  21. Heuer L, Beyerbach M, Lühder F, Beineke A, Strube C. 2015. Neurotoxocarosis alters myelin protein gene transcription and expression. Parasitology Research, 114, 2175–2186. [CrossRef] [PubMed] [Google Scholar]
  22. Janecek E, Beineke A, Schnieder T, Strube C. 2014. Neurotoxocarosis: Marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasites & Vectors, 7, 194. [CrossRef] [PubMed] [Google Scholar]
  23. Janecek E, Waindok P, Bankstahl M, Strube C. 2017. Abnormal neurobehaviour and impaired memory function as a consequence of Toxocara canis- as well as Toxocara cati-induced neurotoxocarosis. PLoS Neglected Tropical Diseases, 11, e0005594. [CrossRef] [PubMed] [Google Scholar]
  24. Kagan BL, Jang H, Capone R, Teran Arce F, Ramachandran S, Lal R, Nussinov R. 2012. Antimicrobial properties of amyloid peptides. Molecular Pharmaceutics, 9, 708–717. [CrossRef] [PubMed] [Google Scholar]
  25. Khatir AA, Mousavi F, Sepidarkish M, Arshadi M, Arjmandi D, Aldaghi M, Rostami A. 2024. Association between Alzheimer’s disease and Toxocara infection/exposure: A case-control study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 118, 744–751. [CrossRef] [PubMed] [Google Scholar]
  26. Kristen H, Santana S, Sastre I, Recuero M, Bullido MJ, Aldudo J. 2015. Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiology of Aging, 36, 2737–2747. [CrossRef] [PubMed] [Google Scholar]
  27. Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD. 2016. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Science Translational Medicine, 8, 139–148. [Google Scholar]
  28. Lapeyre L, Piret J, Rhéaume C, Pons V, Uyar O, Préfontaine P, Rivest S, Boivin G. 2024. Herpes simplex virus 1 infection does not increase amyloid-β pathology in APP/PS1 mice. Journal of Alzheimer’s Disease, 97, 171–178. [CrossRef] [Google Scholar]
  29. Long JM, Holtzman DM. 2019. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 179, 312–339. [CrossRef] [PubMed] [Google Scholar]
  30. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. 1998. Copper, iron and zinc in Alzheimer’s disease senile plaques. Journal of the Neurological Sciences, 158, 47–52. [CrossRef] [PubMed] [Google Scholar]
  31. Macháček T, Leontovyč R, Šmídová B, Majer M, Vondráček O, Vojtěchová I, Petrásek T, Horák P. 2022. Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathogens, 18, e1010302. [CrossRef] [PubMed] [Google Scholar]
  32. Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J, Horák P. 2020. Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasites & Vectors, 13, 426. [CrossRef] [PubMed] [Google Scholar]
  33. Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K. 2006. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiology of Aging, 27, 228–236. [CrossRef] [PubMed] [Google Scholar]
  34. Novák J, Panská L, Macháček T, Kolářová L, Horák P. 2017. Humoral response of mice infected with Toxocara canis following different infection schemes. Acta Parasitologica, 62, 823–835. [CrossRef] [PubMed] [Google Scholar]
  35. Rahman MM, Westermark GT, Zetterberg H, Härd T, Sandgren M. 2018. Protofibrillar and fibrillar amyloid-β binding proteins in cerebrospinal fluid. Journal of Alzheimer’s Disease, 66, 1053–1064. [CrossRef] [PubMed] [Google Scholar]
  36. Resende NM, Gazzinelli-Guimarães PH, Barbosa FS, Oliveira LM, Nogueira DS, Gazzinelli-Guimarães AC, Gonçalves MTP, Amorim CCO, Oliveira FMS, Caliari MV, Rachid MA, Volpato GT, Bueno LL, Geiger SM, Fujiwara RT. 2015. New insights into the immunopathology of early Toxocara canis infection in mice. Parasites & Vectors, 8, 354. [CrossRef] [PubMed] [Google Scholar]
  37. Serra-de-Oliveira N, Boilesen SN, Prado de França Carvalho C, LeSueur-Maluf L, Zollner RL, Spadari RC, Medalha CC, Monteiro de Castro G. 2015. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behavioural Brain Research, 287, 265–275. [CrossRef] [PubMed] [Google Scholar]
  38. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD. 2010. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One, 5, e9505. [CrossRef] [PubMed] [Google Scholar]
  39. Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM. 2016. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Scientific Reports, 6, 32228. [CrossRef] [PubMed] [Google Scholar]
  40. Springer A, Heuer L, Janecek-Erfurth E, Beineke A, Strube C. 2019. Histopathological characterization of Toxocara canis- and T. cati-induced neurotoxocarosis in the mouse model. Parasitology Research, 118, 2591–2600. [CrossRef] [PubMed] [Google Scholar]
  41. Strube C, Waindok P, Raulf MK, Springer A. 2020. Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. Advances in Parasitology, 109, 189–218. [CrossRef] [PubMed] [Google Scholar]
  42. Taylor EL. 1924. On the ascarids of the dog and cat. Annals of Tropical Medicine and Parasitology, 18, 243–251. [CrossRef] [Google Scholar]
  43. Torres L, Robinson SA, Kim DG, Yan A, Cleland TA, Bynoe MS. 2018. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice. Journal of Neuroinflammation, 15, 57. [CrossRef] [PubMed] [Google Scholar]
  44. Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. 2022. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathogens, 18, e1010929. [CrossRef] [PubMed] [Google Scholar]
  45. Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. 2022. Toxocara canis- and Toxocara cati-induced neurotoxocarosis is associated with comprehensive brain transcriptomic alterations. Microorganisms, 10, 177. [CrossRef] [PubMed] [Google Scholar]
  46. Waindok P, Strube C. 2019. Neuroinvasion of Toxocara canis- and T. cati-larvae mediates dynamic changes in brain cytokine and chemokine profile. Journal of Neuroinflammation, 16, 147. [CrossRef] [PubMed] [Google Scholar]
  47. Wang XL, Zeng J, Feng J, Tian YT, Liu YJ, Qiu M, Yan X, Yang Y, Xiong Y, Zhang ZH, Wang Q, Wang JZ, Liu R. 2014. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2. Frontiers in Aging Neuroscience, 6, 66. [PubMed] [Google Scholar]
  48. White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, Hartshorn KL. 2014. Alzheimer’s associated β-amyloid protein inhibits influenza a virus and modulates viral interactions with phagocytes. PLoS One, 9, e101364. [CrossRef] [PubMed] [Google Scholar]
  49. Wisniewski HM, Moretz RC, Lossinsky AS. 1981. Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent. Annals of Neurology, 10, 517–522. [CrossRef] [PubMed] [Google Scholar]
  50. Wong CW, Quaranta V, Glenner GG. 1985. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proceedings of the National Academy of Sciences of the United States of America, 82, 8729–8732. [CrossRef] [PubMed] [Google Scholar]
  51. Wu TK, Bowman DD. 2022. Toxocara canis. Trends in Parasitology, 38, 709–710. [CrossRef] [PubMed] [Google Scholar]
  52. Wu Y, Du S, Johnson JL, Tung HY, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, Zheng H, Corry DB. 2019. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nature Communications, 10(1), 58. [CrossRef] [PubMed] [Google Scholar]
  53. Zhao M, Ma G, Yan X, Li X, Wang E, Xu XX, Zhao JB, Ma X, Zeng J. 2024. Microbial infection promotes amyloid pathology in a mouse model of Alzheimer’s disease via modulating γ-secretase. Molecular Psychiatry, 29, 1491–1500. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.