Open Access
Issue |
Parasite
Volume 32, 2025
|
|
---|---|---|
Article Number | 32 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/parasite/2025025 | |
Published online | 03 June 2025 |
- Adegnika AA, De Vries SG, Zinsou FJ, Honkepehedji YJ, Dejon Agobé J-C, Vodonou KG, Bikangui R, Bouyoukou Hounkpatin A, Bache EB, Massinga Loembe M, Van Leeuwen R, Molemans M, Kremsner PG, Yazdanbakhsh M, Hotez PJ, Bottazzi ME, Li G, Bethony JM, Diemert DJ, Grobusch MP, Mouwenda YD, Betouke Ongwe E, Nkoma Mouima A-M, Nouatin OP, Edoa JR, Manouana PG, Pinto De Jesus S, Kühne V, Mordmueller B, Lell B, Agnandji ST, Koehler C. 2021. Safety and immunogenicity of co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in Gabonese adults: a randomised, controlled, double-blind, phase 1 dose-escalation trial. Lancet Infectious Diseases, 21, 275–285. [CrossRef] [Google Scholar]
- Allen JE, Sutherland TE. 2014. Host protective roles of type 2 immunity: Parasite killing and tissue repair, flip sides of the same coin. Seminars in Immunology, 26, 329–340. [CrossRef] [PubMed] [Google Scholar]
- Bartlett S, Eichenberger RM, Nevagi RJ, Ghaffar KA, Marasini N, Dai Y, Loukas A, Toth I, Skwarczynski M. 2020. Lipopeptide-based oral vaccine against hookworm infection. Journal of Infectious Diseases, 221, 934–942. [CrossRef] [PubMed] [Google Scholar]
- Bouchery T, Filbey K, Shepherd A, Chandler J, Patel D, Schmidt A, Camberis M, Peignier A, Smith AAT, Johnston K, Painter G, Pearson M, Giacomin P, Loukas A, Bottazzi M-E, Hotez P, LeGros G. 2018. A novel blood-feeding detoxification pathway in Nippostrongylus brasiliensis L3 reveals a potential checkpoint for arresting hookworm development. PLoS Pathogens, 14, e1006931. [CrossRef] [PubMed] [Google Scholar]
- Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. 2006. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7, 153. [CrossRef] [PubMed] [Google Scholar]
- Chapman PR, Webster R, Giacomin P, Llewellyn S, Becker L, Pearson MS, De Labastida Rivera F, O’Rourke P, Engwerda CR, Loukas A, McCarthy JS. 2021. Vaccination of human participants with attenuated Necator americanus hookworm larvae and human challenge in Australia: a dose-finding study and randomised, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, 21(12), 1725–1736. [CrossRef] [Google Scholar]
- Clifford JN, Høie MH, Deleuran S, Peters B, Nielsen M, Marcatili P. 2022. BepiPred‐3.0: Improved B‐cell epitope prediction using protein language models. Protein Science, 31, e4497. [CrossRef] [PubMed] [Google Scholar]
- Culma MF. 2021. Strongyloides stercoralis proteome: A reverse approach to the identification of potential immunogenic candidates. Microbial Pathogenesis, 152, 104545. [CrossRef] [PubMed] [Google Scholar]
- Das NC, Gupta PSS, Panda SK, Rana MK, Mukherjee S. 2023. Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. International Immunopharmacology, 115, 109639. [CrossRef] [PubMed] [Google Scholar]
- De Oliveira Lopes D, De Oliveira FM, Do Vale Coelho IE, De Oliveira Santana KT, Mendonça FC, Taranto AG, Dos Santos LL, Miyoshi A, De Carvalho Azevedo VA, Comar M. 2013. Identification of a vaccine against schistosomiasis using bioinformatics and molecular modeling tools. Infection, Genetics and Evolution, 20, 83–95. [CrossRef] [PubMed] [Google Scholar]
- Diemert D. 2017. Phase 2 study to assess the safety, efficacy and immunogenicity of Na-GST-1/alhydrogel co-administered with different toll-like receptor agonists in hookworm-naïve adults. George Washington University, National Institute of Allergy and Infectious Diseases (NIAID). Available at https://clinicaltrials.gov/study/NCT03172975 (accessed 3/1/2024). [Google Scholar]
- Diemert DJ, Pinto AG, Freire J, Jariwala A, Santiago H, Hamilton RG, Periago MV, Loukas A, Tribolet L, Mulvenna J, Correa-Oliveira R, Hotez PJ, Bethony JM. 2012. Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: Implications for the development of vaccines against helminths. Journal of Allergy and Clinical Immunology, 130, 169–176.e6. [CrossRef] [Google Scholar]
- Dikhit MR, Kumar A, Das S, Dehury B, Rout AK, Jamal F, Sahoo GC, Topno RK, Pandey K, Das VNR, Bimal S, Das P. 2017. Identification of potential MHC Class-II-restricted epitopes derived from Leishmania donovani antigens by reverse vaccinology and evaluation of their CD4+ T-cell responsiveness against visceral leishmaniasis. Frontiers in Immunology, 8, 1763. [CrossRef] [PubMed] [Google Scholar]
- Dimitrov I, Flower DR, Doytchinova I. 2013. AllerTOP – a server for in silico prediction of allergens. BMC Bioinformatics, 14, S4. [CrossRef] [PubMed] [Google Scholar]
- Donohue RE, Cross ZK, Michael E. 2019. The extent, nature, and pathogenic consequences of helminth polyparasitism in humans: a meta-analysis. PLoS Neglected Tropical Diseases, 13, e0007455. [CrossRef] [PubMed] [Google Scholar]
- Eichenberger RM, Sotillo J, Loukas A. 2018. Immunobiology of parasitic worm extracellular vesicles. Immunology and Cell Biology, 96, 704–713. [CrossRef] [Google Scholar]
- Evangelista FMD, Van Vliet AHM, Lawton SP, Betson M. 2022. A reverse vaccinology approach identifies putative vaccination targets in the zoonotic nematode Ascaris. Frontiers in Veterinary Science, 9, 1014198. [CrossRef] [PubMed] [Google Scholar]
- Evangelista FMD, Van Vliet AHM, Lawton SP, Betson M. 2023. In silico design of a polypeptide as a vaccine candidate against ascariasis. Scientific Reports, 13, 3504. [CrossRef] [PubMed] [Google Scholar]
- Ezkurdia I, Tress ML. 2011. Protein structural domains: definition and prediction. Current Protocols in Protein Science, 66, 2.14.1–2.14.16. [CrossRef] [Google Scholar]
- Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook, Walker JM, Editor, Humana Press: Totowa, NJ. p. 571–607. [CrossRef] [Google Scholar]
- Ghodeif AO, Jain H. 2021. Hookworm, in: StatPearls, StatPearls Publishing, Treasure Island, FL, p. 1–7. [Google Scholar]
- Goodswen SJ, Kennedy PJ, Ellis JT. 2023. A guide to current methodology and usage of reverse vaccinology towards in silico vaccine discovery. FEMS Microbiology Reviews, 47, fuad004. [CrossRef] [PubMed] [Google Scholar]
- Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. 2011. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics, 63, 325–335. [CrossRef] [PubMed] [Google Scholar]
- Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J, Bednar D, Damborsky J. 2021. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics, 37, 23–28. [CrossRef] [PubMed] [Google Scholar]
- Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao S. 2004. Hookworm infection. New England Journal of Medicine, 351, 799–807. [CrossRef] [PubMed] [Google Scholar]
- Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. 2017. WormBase ParaSite – a comprehensive resource for helminth genomics. Molecular and Biochemical Parasitology, 215, 2–10. [CrossRef] [PubMed] [Google Scholar]
- Ivanciuc O. 2003. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Research, 31, 359–362. [CrossRef] [PubMed] [Google Scholar]
- Ivanciuc O, Schein CH, Braun W. 2002. Data mining of sequences and 3D structures of allergenic proteins. Bioinformatics, 18, 1358–1364. [CrossRef] [PubMed] [Google Scholar]
- Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M. 2018. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154, 394–406. [CrossRef] [PubMed] [Google Scholar]
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589. [CrossRef] [PubMed] [Google Scholar]
- Knox D.. 2011. Proteases in blood-feeding nematodes and their potential as vaccine candidates, in Cysteine Proteases of Pathogenic Organisms, Robinson MW, Dalton JP, Editors. Springer US: Boston, MA, p. 155–176. [CrossRef] [PubMed] [Google Scholar]
- Lafuente E, Reche P. 2009. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Current Pharmaceutical Design, 15, 3209–3220. [CrossRef] [PubMed] [Google Scholar]
- Logan J, Pearson MS, Manda SS, Choi Y-JJ, Field M, Eichenberger RM, Mulvenna J, Nagaraj SH, Fujiwara RT, Gazzinelli-Guimaraes P, Bueno L, Mati V, Bethony JM, Mitreva M, Sotillo J, Loukas A. 2020. Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLoS Neglected Tropical Diseases, 14, 1–30. [Google Scholar]
- Loukas A, Gaze S, Mulvenna JP, Gasser RB, Brindley PJ, Doolan DL, Bethony JM, Jones MK, Gobert GN, Driguez P, McManus DP, Hotez PJ. 2011. Vaccinomics for the major blood feeding helminths of humans. OMICS: A Journal of Integrative Biology, 15, 567–577. [CrossRef] [PubMed] [Google Scholar]
- Loukas A, Maizels RM, Hotez PJ. 2021. The yin and yang of human soil-transmitted helminth infections. International Journal for Parasitology, 51, 1243–1253. [CrossRef] [PubMed] [Google Scholar]
- Marcilla A, Trelis M, Cortés A, Sotillo J, Cantalapiedra F, Minguez MT, Valero ML, Sánchez del Pino MM, Muñoz-Antoli C, Toledo R, Bernal D. 2012. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One, 7, e45974. [CrossRef] [PubMed] [Google Scholar]
- Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research, 49, D412–D419. [CrossRef] [PubMed] [Google Scholar]
- Montaño KJ, Cuéllar C, Sotillo J. 2021. Rodent models for the study of soil-transmitted helminths: a proteomics approach. Frontiers in Cellular and Infection Microbiology, 11, 639573. [CrossRef] [PubMed] [Google Scholar]
- Nair MG, Herbert DR. 2016. Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages. Immunology, 148, 115–124. [CrossRef] [PubMed] [Google Scholar]
- Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O. 2008. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Computational Biology, 4, e1000107. [CrossRef] [PubMed] [Google Scholar]
- Okakpu OK, Dillman AR. 2022. Review of the role of parasitic nematode excretory/secretory proteins in host immunomodulation. Journal of Parasitology, 108, 199–208. [CrossRef] [PubMed] [Google Scholar]
- Oliveira FM, Coelho IEV, Lopes MD, Taranto AG, Junior MC, Santos LLD, Villar JAPF, Fonseca CT, Lopes DDO. 2016. The use of reverse vaccinology and molecular modeling associated with cell proliferation stimulation approach to select promiscuous epitopes from Schistosoma mansoni. Applied Biochemistry and Biotechnology, 179, 1023–1040. [CrossRef] [PubMed] [Google Scholar]
- Perera DJ, Ndao M. 2021. Promising technologies in the field of helminth vaccines. Frontiers in Immunology, 12, 711650. [CrossRef] [PubMed] [Google Scholar]
- Pizza M, Scarlato V, Masignani V, Giuliani MM, Aricò B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R. 2000. Identification of vaccine candidates against Serogroup B Meningococcus by whole-genome sequencing. Science, 287, 1816–1820. [CrossRef] [PubMed] [Google Scholar]
- Quinzo MJ, Lafuente EM, Zuluaga P, Flower DR, Reche PA. 2019. Computational assembly of a human Cytomegalovirus vaccine upon experimental epitope legacy. BMC Bioinformatics, 20, 476. [CrossRef] [PubMed] [Google Scholar]
- Rappuoli R. 2000. Reverse vaccinology. Current Opinion in Microbiology, 3, 445–450. [CrossRef] [PubMed] [Google Scholar]
- Reche PA, Reinherz EL. 2005. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Research, 33, W138–W142. [CrossRef] [PubMed] [Google Scholar]
- Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48, W449–W454. [CrossRef] [PubMed] [Google Scholar]
- Rost B. 1999. Twilight zone of protein sequence alignments. Protein Engineering, Design and Selection, 12, 85–94. [CrossRef] [Google Scholar]
- Saravanan V, Chagaleti BK, Narayanan PL, Anandan VB, Manoharan H, Anjana GV, Peraman R, Namasivayam SKR, Kavisri M, Arockiaraj J, Muthu Kumaradoss K, Moovendhan M. 2024. Discovery and development of COVID‐19 vaccine from laboratory to clinic. Chemical Biology & Drug Design, 103, e14383. [CrossRef] [PubMed] [Google Scholar]
- Schein CH, Negi SS, Braun W. 2022. Still SDAPing along: 20 years of the structural database of allergenic proteins. Frontiers in Allergy, 3, 863172. [CrossRef] [PubMed] [Google Scholar]
- Sharma N, Naorem LD, Jain S, Raghava GPS. 2022. ToxinPred2: an improved method for predicting toxicity of proteins. Briefings in Bioinformatics, 23, bbac174. [CrossRef] [PubMed] [Google Scholar]
- Sharma N, Patiyal S, Dhall A, Pande A, Arora C, Raghava GPS. 2021. AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes. Briefings in Bioinformatics, 22, bbaa294. [CrossRef] [PubMed] [Google Scholar]
- Sotillo J, Sanchez-Flores A, Cantacessi C, Harcus Y, Pickering D, Bouchery T, Camberis M, Tang S-CC, Giacomin P, Mulvenna J, Mitreva M, Berriman M, LeGros G, Maizels RM, Loukas A. 2014. Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Molecular and Cellular Proteomics, 13, 2736–2751. [CrossRef] [Google Scholar]
- Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, Von Heijne G, Nielsen H. 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40, 1023–1025. [CrossRef] [PubMed] [Google Scholar]
- Thuma N, Döhler D, Mielenz D, Sticht H, Radtke D, Reimann L, Warscheid B, Voehringer D. 2022. A newly identified secreted larval antigen elicits basophil-dependent protective immunity against N. brasiliensis infection. Frontiers in Immunology, 13, 979491. [CrossRef] [PubMed] [Google Scholar]
- Tian W, Skolnick J. 2003. How well is enzyme function conserved as a function of pairwise sequence identity? Journal of Molecular Biology, 333, 863–882. [CrossRef] [PubMed] [Google Scholar]
- Wadhwa R, Al Amin ASM, Wadhwa R. 2021. Helminthiasis, in StatPearls, StatPearls Publishing: Treasure Island, FL, p. 1–11. [Google Scholar]
- Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11, 568. [CrossRef] [PubMed] [Google Scholar]
- Wei J, Damania A, Gao X, Liu Z, Mejia R, Mitreva M, Strych U, Bottazzi ME, Hotez PJ, Zhan B. 2016. The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasites & Vectors, 9, 518. [CrossRef] [PubMed] [Google Scholar]
- Wong MTJ, Anuar NS, Noordin R, Tye GJ. 2023. Soil-transmitted helminthic vaccines: Where are we now? Acta Tropica, 239, 106796. [CrossRef] [PubMed] [Google Scholar]
- World Health Organization. 2020. Ending the neglect to attain the sustainable development goals a road map for neglected tropical diseases 2021–2030. World Health Organization. Available at https://iris.who.int/handle/10665/338565. [Google Scholar]
- Zhan B, Perally S, Brophy PM, Xue J, Goud G, Liu S, Deumic V, De Oliveira LM, Bethony J, Bottazzi ME, Jiang D, Gillespie P, Xiao S, Gupta R, Loukas A, Ranjit N, Lustigman S, Oksov Y, Hotez P. 2010. Molecular cloning, biochemical characterization, and partial protective immunity of the heme-binding glutathione s-transferases from the human hookworm Necator americanus. Infection and Immunity, 78, 1552–1563. [CrossRef] [PubMed] [Google Scholar]
- Zhao BP, Chen L, Zhang YL, Yang JM, Jia K, Sui CY, Yuan CX, Lin JJ, Feng XG. 2011. In silico prediction of binding of promiscuous peptides to multiple MHC class-II molecules identifies the Th1 cell epitopes from secreted and transmembrane proteins of Schistosoma japonicum in BALB/c mice. Microbes and Infection, 13, 709–719. [CrossRef] [PubMed] [Google Scholar]
- Zinsou JF, Honpkehedji J, Agobe Jean Claude D, Adegbite BR, Ronald Edoa J, Van Leeuwen R, Diemert D, Elena Botazzi M, Kremsner PG, Yazdanbakhsh M, Hotez P, Grobusch MP, Akim Adegnika A, De Vries S. 2019. OC 8521 Preliminary report on safety of co-administered human hookworm vaccine candidates Na-APR-1 (m74)/alhydrogel® and Na-GST-1/alhydrogel® in Gabonese children. BMJ Global Health, 4, A12. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.