Open Access
Issue |
Parasite
Volume 32, 2025
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/parasite/2025008 | |
Published online | 24 February 2025 |
- Barton DP, Martelli P, Luk W, Zhu X, Shamsi S. 2020. Infection of Hexametra angusticaecoides Chabaud & Brygoo, 1960 (Nematoda: Ascarididae) in a population of captive crested geckoes, Correlophus ciliates Guichenot (Reptilia: Diplodactylidae). Parasitology, 147, 673–680. [CrossRef] [PubMed] [Google Scholar]
- Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M. 2007. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics, 23, 2957–2958. [CrossRef] [PubMed] [Google Scholar]
- Chen HX, Li L. 2023. Molecular data reveal a new species of Seuratascaris Sprent, 1985 (Nematoda: Ascaridoidea) from Quasipaa exilispinosa (Liu & Hu) (Amphibia: Anura). Parasitology International. 93, 102698. [CrossRef] [PubMed] [Google Scholar]
- Chen HX, Zhang K, Zhang LP, Li L. 2018. Morphological and molecular characterization of Seuratascaris numidica (Seurat, 1917) (Ascaridida: Ascarididae). Acta Parasitologica, 63, 154–159. [CrossRef] [PubMed] [Google Scholar]
- Fagerholm HP. 1991. Systematic implications of male caudal morphology in ascaridoid nematode parasites. Systematic Parasitology, 19, 215–218. [CrossRef] [Google Scholar]
- Gao JF, Zhang XX, Wang XX, Li Q, Li Y, Xu WW, Gao Y, Wang CR. 2019. According to mitochondrial DNA evidence, Parascaris equorum and Parascaris univalens may represent the same species. Journal of Helminthology, 93, 383–388. [CrossRef] [PubMed] [Google Scholar]
- Gao Y, Hu Y, Xu S, Liang H, Lin H, Yin TH, Zhao K. 2024. Characterisation of the mitochondrial genome and phylogenetic analysis of Toxocara apodemi (Nematoda: Ascarididae). Journal of Helminthology, 98, e33. [CrossRef] [PubMed] [Google Scholar]
- Gruber AR, Bernhart SH, Lorenz R. 2015. The ViennaRNA web services, in: RNA bioinformatics, methods in molecular biology, Picardi E, Editor. Springer: New York. p. 307–326. [CrossRef] [PubMed] [Google Scholar]
- Gu XH, Chen HX, Hu JJ, Li L. 2024. Morphology and ASAP analysis of the important zoonotic nematode parasite Baylisascaris procyonis (Stefahski and Zarnowski, 1951), with molecular phylogenetic relationships of Baylisascaris species (Nematoda: Ascaridida). Parasitology, 151, 200–212. [PubMed] [Google Scholar]
- Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, Li L. 2023. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasites & Vectors, 16, e275. [CrossRef] [Google Scholar]
- Guo N, Sitko J, Chen HX, Li L. 2021. Morphological and genetic characterization of Porrocaecum angusticolle (Molin, 1860) (Nematoda: Ascaridomorpha) from the common buzzard Buteo buteo (Linnaeus) (Accipitriformes: Accipitridae) in Czech Republic. Parasitology International, 83, 1–7. [Google Scholar]
- Han MY, Fei JR, Liu ZT, Liu P, Zhao WG. 2023. The comparative research of argyrophilic cells in the digestive tract of Rana catesbeiana during pre-hibernation, hibernation, and post-hibernation. Chinese Journal of Zoology, 58, 908–915. [Google Scholar]
- Jabbar A, Littlewood DT, Mohandas N, Briscoe AG, Foster PG, Müller F, von Samson-Himmelstjerna G, Jex AR, Gasser RB. 2014. The mitochondrial genome of Parascaris univalens – implications for a “forgotten” parasite. Parasites & Vectors, 7, e428. [CrossRef] [PubMed] [Google Scholar]
- Jin JJ, Yu WB, Yang JB, Song Y, de Pamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, e241. [CrossRef] [Google Scholar]
- Lee BD. 2018. Python implementation of codon adaptation index. Journal of Open Source Software, 3, 905. [CrossRef] [Google Scholar]
- Liu SS, Liu GH, Zhu XQ, Weng YB. 2015. The complete mitochondrial genome of Pseudoterranova azarasi and comparative analysis with other anisakid nematodes. Infection Genetics and Evolution, 33, 293–298. [CrossRef] [Google Scholar]
- Liu Y, Fang JY, Zheng N, Wu HL. 2023. Seuratascaris schmackeri sp. nov. (Nematoda: Ascarididae) from the Chinese frog Odorrana schmackeri Boettger, 1892 (Amphibia: Anura) based on morphological and molecular evidence. Pakistan Journal of Zoology, 55, 1621–1626. [Google Scholar]
- Meng GL, Li YY, Yang CT, Liu SL. 2019. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47, e63. [CrossRef] [PubMed] [Google Scholar]
- Moravec F, Bakenhaster MD, Seyoum S, Tringali MD. 2024. Heterocheilus floridensis sp. n. (Nematoda: Heterocheilidae) from the West Indian manatee Trichechus manatus (Trichechidae, Sirenia) in Florida, USA. Folia Parasitologica, 71, e006. [Google Scholar]
- Park YC, Kim W, Park JK. 2011. The complete mitochondrial genome of human parasitic roundworm, Ascaris lumbricoides. Mitochondrial DNA, 22, 91–93. [CrossRef] [PubMed] [Google Scholar]
- Peng LF, Lu CH, Huang S, Guo P, Zhang YP. 2014. A new species of the genus Thermophis (Serpentes: Colubridae) from Shangri-La, Northern Yunnan, China, with a proposal for an eclectic rule for species delimitation. Asian Herpetological Research, 5, 228–239. [CrossRef] [Google Scholar]
- Reuter JS, Mathews DH. 2010. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, e129. [CrossRef] [Google Scholar]
- Sharifdini M, Heckmann RA, Mikaeili F. 2021. The morphological and molecular characterization of Baylisascaris devosi Sprent, 1952 (Ascaridoidea, Nematoda), collected from Pine marten (Martes martes) in Iran. Parasites & Vectors, 14, e33. [CrossRef] [Google Scholar]
- Sprent JFA. 1985. Ascaridoid nematodes of amphibians and reptiles: Seuratascaris n. g. Annales de Parasitologie Humaine Comparée, 60, 231–246. [CrossRef] [EDP Sciences] [Google Scholar]
- Wang PQ, Zhao YR, Chen QQ. 1978. Some parasitic nematodes of vertebrates from South China. Journal Fujian Normal University, 2, 75–90 (In Chinese). [Google Scholar]
- Xie Y, Wang L, Chen Y, Wang Z, Zhu P, Hu Z, Han X, Wang Z, Zhou X, Zuo Z. 2022. The complete mitogenome of Toxocara vitulorum: novel insights into the phylogenetics in Toxocaridae. Animals, 12, e3546. [CrossRef] [PubMed] [Google Scholar]
- Xie Y, Zhang Z, Niu L, Wang Q, Wang C, Lan J, Deng J, Fu Y, Nie H, Yan N, Yang D, Hao G, Gu X, Wang S, Peng X, Yang G. 2011. The mitochondrial genome of Baylisascaris procyonis. PLoS One, 6, e27066. [CrossRef] [PubMed] [Google Scholar]
- Xie Y, Zhang Z, Wang C, Lan J, Li Y, Chen Z, Fu Y, Nie H, Yan N, Gu X, Wang S, Peng X, Yang G. 2011. Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear. Gene, 482, 59–67. [CrossRef] [PubMed] [Google Scholar]
- Yamada A, Ikeda N, Ono H. 2017. The complete mitochondrial genome of Anisakis pegreffii Campana-Rouget and Biocca, 1955, (Nematoda, Chromadorea, Rhabditida, Anisakidae) – clarification of mitogenome sequences of the Anisakis simplex species complex. Mitochondrial DNA Part B Resources, 2, 240–241. [CrossRef] [PubMed] [Google Scholar]
- Zhao JH, Tu GJ, Wu XB, Li CP. 2018. Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes. Journal of Helminthology, 92, 369–378. [CrossRef] [PubMed] [Google Scholar]
- Zhao Q, Abuzeid AMI, He L, Zhuang T, Li X, Liu J, Zhu S, Chen X, Li G. 2021. The mitochondrial genome sequence analysis of Ophidascaris baylisi from the Burmese python (Python molurus bivittatus). Parasitology International, 85, e102434. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.