Open Access
Issue
Parasite
Volume 31, 2024
Article Number 65
Number of page(s) 20
DOI https://doi.org/10.1051/parasite/2024065
Published online 28 October 2024
  1. Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. 2022. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Neglected Tropical Diseases, 16, e0010929. [CrossRef] [PubMed] [Google Scholar]
  2. Bai Y, Ma KN, Sun XY, Dan Liu R, Long SR, Jiang P, Wang ZQ, Cui J. 2021. Molecular characterization of a novel cathepsin L from Trichinella spiralis and its participation in invasion, development and reproduction. Acta Tropica, 224, 106112. [CrossRef] [PubMed] [Google Scholar]
  3. Barennes H, Sayasone S, Odermatt P, De Bruyne A, Newton PN, Vongphrachanh P, Martinez-Aussel B, Strobel M, Dupouy-Camet J. 2008. A major trichinellosis outbreak suggesting a high endemicity of Trichinella infection in northern Laos. American Journal of Tropical Medicine and Hygiene, 78, 40–44. [CrossRef] [PubMed] [Google Scholar]
  4. Batista TM, Marques JT. 2011. RNAi pathways in parasitic protists and worms. Journal of Proteomics, 74, 1504–1514. [CrossRef] [PubMed] [Google Scholar]
  5. Cova MM, Lamarque MH, Lebrun M. 2022. How Apicomplexa parasites secrete and build their invasion machinery. Annual Review of Microbiology, 76, 619–640. [CrossRef] [PubMed] [Google Scholar]
  6. De Los Reyes Jimenez M, Lechner A, Alessandrini F, Bohnacker S, Schindela S, Trompette A, Haimerl P, Thomas D, Henkel F, Mourao A, Geerlof A, Da Costa CP, Brune B, Nusing R, Jakobsson PJ, Nockher WA, Feige MJ, Haslbeck M, Ohnmacht C, Marsland BJ, Voehringer D, Harris NL, Schmidt-Weber CB, Esser-Von Bieren J. 2020. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products. Science Translational Medicine, 12, eaay0605. [CrossRef] [PubMed] [Google Scholar]
  7. Despommier DD. 1998. How does Trichinella spiralis make itself at home? Parasitology Today, 14, 318–323. [CrossRef] [Google Scholar]
  8. Drews L, Zimmermann M, Westhoff P, Brilhaus D, Poss RE, Bergmann L, Wiek C, Brenneisen P, Piekorz RP, Mettler-Altmann T, Weber APM, Reichert AS. 2020. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Disease Models & Mechanisms, 13, dmm047134. [CrossRef] [PubMed] [Google Scholar]
  9. European. 2023. The European Union One Health 2022 zoonoses report. European Food Safety Authority Journal, 21, e8442. [Google Scholar]
  10. Fahien LA, Kmiotek EH, Woldegiorgis G, Evenson M, Shrago E, Marshall M. 1985. Regulation of aminotransferase-glutamate dehydrogenase interactions by carbamyl phosphate synthase-I, Mg2+ plus leucine versus citrate and malate Journal of Biological Chemistry, 260, 6069–6079. [CrossRef] [Google Scholar]
  11. Ferguson JD, Castro GA. 1973. Metabolism of intestinal stages of Trichinella spiralis. American Journal of Physiology, 225, 85–89. [CrossRef] [PubMed] [Google Scholar]
  12. Gao Y, Meng X, Yang X, Meng S, Han C, Li X, Wang S, Li W, Song M. 2021. RNAi-mediated silencing of Trichinella spiralis glutaminase results in reduced muscle larval infectivity. Veterinary Research, 52, 51. [CrossRef] [PubMed] [Google Scholar]
  13. Guo KX, Bai Y, Ren HN, Sun XY, Song YY, Liu RD, Long SR, Zhang X, Jiang P, Wang ZQ, Cui J. 2020. Characterization of a Trichinella spiralis aminopeptidase and its participation in invasion, development and fecundity. Veterinary Research, 51, 78. [CrossRef] [PubMed] [Google Scholar]
  14. Haldar D, Sen D, Gayen K. 2017. Development of spectrophotometric method for the analysis of multi-component carbohydrate mixture of different moieties. Applied Biochemistry and Biotechnology, 181, 1416–1434. [CrossRef] [PubMed] [Google Scholar]
  15. Han LL, Lu QQ, Li YL, Zheng WW, Ren P, Liu RD, Cui J, Wang ZQ. 2024. Application of a recombinant novel trypsin from Trichinella spiralis for serodiagnosis of trichinellosis. Parasites & Vectors, 17, 9. [CrossRef] [PubMed] [Google Scholar]
  16. Han LL, Lu QQ, Zheng WW, Li YL, Song YY, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. 2024. A novel trypsin of Trichinella spiralis mediates larval invasion of gut epithelium via binding to PAR2 and activating ERK1/2 pathway. PLoS Neglected Tropical Diseases, 18, e0011874. [CrossRef] [PubMed] [Google Scholar]
  17. Hao HN, Song YY, Ma KN, Wang BN, Long SR, Liu RD, Zhang X, Wang ZQ, Cui J. 2022. A novel C-type lectin from Trichinella spiralis mediates larval invasion of host intestinal epithelial cells. Veterinary Research, 53, 85. [CrossRef] [PubMed] [Google Scholar]
  18. Harder A. 2016. The biochemistry of Haemonchus contortus and other parasitic nematodes. Advances in Parasitology, 93, 69–94. [CrossRef] [PubMed] [Google Scholar]
  19. Hohnholt MC, Andersen VH, Andersen JV, Christensen SK, Karaca M, Maechler P, Waagepetersen HS. 2018. Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. Journal of Cerebral Blood Flow & Metabolism, 38, 1754–1768. [CrossRef] [PubMed] [Google Scholar]
  20. Hortua Triana MA, Marquez-Nogueras KM, Vella SA, Moreno SNJ. 2018. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. Molecular Cell Research, 1865, 1846–1856. [Google Scholar]
  21. Hu CX, Xu YXY, Hao HN, Liu RD, Jiang P, Long SR, Wang ZQ, Cui J. 2021. Oral vaccination with recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase elicited a protective immunity in BALB/c mice. PLoS Neglected Tropical Diseases, 15, e0009865. [CrossRef] [PubMed] [Google Scholar]
  22. Hu CX, Zeng J, Hao HN, Xu YXY, Liu F, Liu RD, Long SR, Wang ZQ, Cui J. 2021. Biological properties and roles of a Trichinella spiralis inorganic pyrophosphatase in molting and developmental process of intestinal larval stages. Veterinary Research, 52, 6. [CrossRef] [PubMed] [Google Scholar]
  23. Hu YY, Zhang R, Yan SW, Yue WW, Zhang JH, Liu RD, Long SR, Cui J, Wang ZQ. 2021. Characterization of a novel cysteine protease in Trichinella spiralis and its role in larval intrusion, development and fecundity. Veterinary Research, 52, 113. [CrossRef] [PubMed] [Google Scholar]
  24. Jiang P, Zhang X, Wang LA, Han LH, Yang M, Duan JY, Sun GG, Qi X, Liu RD, Wang ZQ, Cui J. 2016. Survey of Trichinella infection from domestic pigs in the historical endemic areas of Henan province, central China. Parasitology Research, 115, 4707–4709. [CrossRef] [PubMed] [Google Scholar]
  25. Kloehn J, Blume M, Cobbold SA, Saunders EC, Dagley MJ, Mcconville MJ. 2016. Using metabolomics to dissect host-parasite interactions. Current Opinion in Microbiology, 32, 59–65. [CrossRef] [PubMed] [Google Scholar]
  26. Kori LD, Valecha N, Anvikar AR. 2020. Glutamate dehydrogenase: a novel candidate to diagnose Plasmodium falciparum through rapid diagnostic test in blood specimen from fever patients. Scientific Reports, 10, 6307. [CrossRef] [PubMed] [Google Scholar]
  27. Lei JJ, Hu YY, Liu F, Yan SW, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. 2020. Molecular cloning and characterization of a novel peptidase from Trichinella spiralis and protective immunity elicited by the peptidase in BALB/c mice. Veterinary Research, 51, 111. [CrossRef] [PubMed] [Google Scholar]
  28. Liu RD, Cui J, Liu XL, Jiang P, Sun GG, Zhang X, Long SR, Wang L, Wang ZQ. 2015. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae. Acta Tropica, 150, 79–86. [CrossRef] [PubMed] [Google Scholar]
  29. Liu RD, Meng XY, Li CL, Lin XZ, Xu QY, Xu H, Long SR, Cui J, Wang ZQ. 2023. Trichinella spiralis cathepsin L damages the tight junctions of intestinal epithelial cells and mediates larval invasion. PLoS Neglected Tropical Diseases, 17, e0011816. [CrossRef] [PubMed] [Google Scholar]
  30. Liu RD, Qi X, Sun GG, Jiang P, Zhang X, Wang LA, Liu XL, Wang ZQ, Cui J. 2016. Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by early infection sera. Veterinary Parasitology, 231, 43–46. [CrossRef] [PubMed] [Google Scholar]
  31. Ma KN, Zhang Y, Zhang ZY, Wang BN, Song YY, Han LL, Zhang XZ, Long SR, Cui J, Wang ZQ. 2023. Trichinella spiralis galectin binding to toll-like receptor 4 induces intestinal inflammation and mediates larval invasion of gut mucosa. Veterinary Research, 54, 113. [CrossRef] [PubMed] [Google Scholar]
  32. Maier AG, Van Ooij C. 2022. The role of cholesterol in invasion and growth of malaria parasites. Frontiers in Cellular and Infection Microbiology, 12, 984049. [CrossRef] [PubMed] [Google Scholar]
  33. Mckenna MC, Stridh MH, Mcnair LF, Sonnewald U, Waagepetersen HS, Schousboe A. 2016. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. Journal of Neuroscience Research, 94, 1561–1571. [CrossRef] [PubMed] [Google Scholar]
  34. Mitreva M, Jasmer DP, Zarlenga DS, Wang Z, Abubucker S, Martin J, Taylor CM, Yin Y, Fulton L, Minx P, Yang SP, Warren WC, Fulton RS, Bhonagiri V, Zhang X, Hallsworth-Pepin K, Clifton SW, Mccarter JP, Appleton J, Mardis ER, Wilson RK. 2011. The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 43, 228–235. [CrossRef] [PubMed] [Google Scholar]
  35. Morrison GR. 1971. Microchemical determination of organic nitrogen with Nessler reagent. Analytical Biochemistry, 43, 527–532. [CrossRef] [PubMed] [Google Scholar]
  36. Muhamad N, Simcock DC, Pedley KC, Simpson HV, Brown S. 2011. The kinetic properties of the glutamate dehydrogenase of Teladorsagia circumcincta and their significance for the lifestyle of the parasite. Comparative Biochemistry and Physiology Part B, 159, 71–77. [CrossRef] [Google Scholar]
  37. Pozio E. 2005. The broad spectrum of Trichinella hosts: from cold- to warm-blooded animals. Veterinary Parasitology, 132, 3–11. [CrossRef] [PubMed] [Google Scholar]
  38. Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-Von Bieren J, Prazeres Da Costa C. 2022. Helminthic dehydrogenase drives PGE(2) and IL-10 production in monocytes to potentiate Treg induction. EMBO Reports, 23, e54096. [CrossRef] [PubMed] [Google Scholar]
  39. Qi X, Yue X, Han Y, Jiang P, Yang F, Lei JJ, Liu RD, Zhang X, Wang ZQ, Cui J. 2018. Characterization of two Trichinella spiralis adult-specific DNase II and their capacity to induce protective immunity. Frontiers in Microbiology, 9, 2504. [CrossRef] [PubMed] [Google Scholar]
  40. Rao ChS, Subash YE. 2013. The effect of chronic tobacco smoking and chewing on the lipid profile. Journal of Clinical and Diagnostic Research, 7, 31–34. [PubMed] [Google Scholar]
  41. Ren HN, Bai SJ, Wang Z, Han LL, Yan SW, Jiang P, Zhang X, Wang ZQ, Cui J. 2021. A metalloproteinase Tsdpy31 from Trichinella spiralis participates in larval molting and development. International Journal of Biological Macromolecules, 192, 883–894. [CrossRef] [PubMed] [Google Scholar]
  42. Ren HN, Liu RD, Song YY, Zhuo TX, Guo KX, Zhang Y, Jiang P, Wang ZQ, Cui J. 2019. Label-free quantitative proteomic analysis of molting-related proteins of Trichinella spiralis intestinal infective larvae. Veterinary Research, 50, 70. [CrossRef] [PubMed] [Google Scholar]
  43. Ren HN, Zhuo TX, Bai SJ, Bai Y, Sun XY, Dan Liu R, Long SR, Cui J, Wang ZQ. 2021. Proteomic analysis of hydrolytic proteases in excretory/secretory proteins from Trichinella spiralis intestinal infective larvae using zymography combined with shotgun LC-MS/MS approach. Acta Tropica, 216, 105825. [CrossRef] [PubMed] [Google Scholar]
  44. Rostami A, Gamble HR, Dupouy-Camet J, Khazan H, Bruschi F. 2017. Meat sources of infection for outbreaks of human trichinellosis. Food Microbiology, 64, 65–71. [CrossRef] [PubMed] [Google Scholar]
  45. Skuce PJ, Stewart EM, Smith WD, Knox DP. 1999. Cloning and characterization of glutamate dehydrogenase (GDH) from the gut of Haemonchus contortus. Parasitology, 118(Pt 3), 297–304. [CrossRef] [PubMed] [Google Scholar]
  46. Smith HQ, Li C, Stanley CA, Smith TJ. 2019. Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochemical Research, 44, 117–132. [CrossRef] [PubMed] [Google Scholar]
  47. Song YY, Lu QQ, Han LL, Yan SW, Zhang XZ, Liu RD, Long SR, Cui J, Wang ZQ. 2022. Proteases secreted by Trichinella spiralis intestinal infective larvae damage the junctions of the intestinal epithelial cell monolayer and mediate larval invasion. Veterinary Research, 53, 19. [CrossRef] [PubMed] [Google Scholar]
  48. Song YY, Zhang XZ, Wang BN, Cheng YK, Guo X, Zhang X, Long SR, Liu RD, Wang ZQ, Cui J. 2024. A novel Trichinella spiralis serine proteinase disrupted gut epithelial barrier and mediated larval invasion through binding to RACK1 and activating MAPK/ERK1/2 pathway. PLoS Neglected Tropical Diseases, 18, e0011872. [CrossRef] [PubMed] [Google Scholar]
  49. Song YY, Zhang XZ, Wang BN, Weng MM, Zhang ZY, Guo X, Zhang X, Wang ZQ, Cui J. 2023. Molecular characterization of a novel serine proteinase from Trichinella spiralis and its participation in larval invasion of gut epithelium. PLoS Neglected Tropical Diseases, 17, e0011629. [CrossRef] [PubMed] [Google Scholar]
  50. Stegen S, Rinaldi G, Loopmans S, Stockmans I, Moermans K, Thienpont B, Fendt SM, Carmeliet P, Carmeliet G. 2020. Glutamine metabolism controls chondrocyte identity and function. Developmental Cell, 53, 530–544.e538. [CrossRef] [PubMed] [Google Scholar]
  51. Sun GG, Liu RD, Wang ZQ, Jiang P, Wang L, Liu XL, Liu CY, Zhang X, Cui J. 2015. New diagnostic antigens for early trichinellosis: the excretory-secretory antigens of Trichinella spiralis intestinal infective larvae. Parasitology Research, 114, 4637–4644. [CrossRef] [PubMed] [Google Scholar]
  52. Sun GG, Song YY, Jiang P, Ren HN, Yan SW, Han Y, Liu RD, Zhang X, Wang ZQ, Cui J. 2018. Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool. PLoS Neglected Tropical Diseases, 12, e0006485. [CrossRef] [PubMed] [Google Scholar]
  53. Traber GM, Yu AM. 2023. RNAi-based therapeutics and novel RNA bioengineering technologies. Journal of Pharmacology and Experimental Therapeutics, 384, 133–154. [CrossRef] [PubMed] [Google Scholar]
  54. Van Der Giessen J, Gómez-Morales MA, Troell K, Gomes J, Sotiraki S, Rozycki M, Kucsera I, Djurković-Djaković O, Robertson LJ. 2021. Surveillance of foodborne parasitic diseases in Europe in a One Health approach. Parasite Epidemiology & Control, 13, e00205. [CrossRef] [Google Scholar]
  55. Wagner JT, Lüdemann H, Färber PM, Lottspeich F, Krauth-Siegel RL. 1998. Glutamate dehydrogenase, the marker protein of Plasmodium falciparum–cloning, expression and characterization of the malarial enzyme. European Journal of Biochemistry, 258, 813–819. [CrossRef] [PubMed] [Google Scholar]
  56. Wang J, Paz C, Padalino G, Coghlan A, Lu Z, Gradinaru I, Collins JNR, Berriman M, Hoffmann KF, Collins JJ. 2020. Large-scale RNAi screening uncovers therapeutic targets in the parasite Schistosoma mansoni. Science, 369, 1649–1653. [CrossRef] [PubMed] [Google Scholar]
  57. Wang Z, Lu QQ, Weng MM, Li YL, Han LL, Song YY, Shi YL, Liu RD, Cui J, Wang ZQ. 2023. Binding of Trichinella spiralis C-type lectin with syndecan-1 on intestinal epithelial cells mediates larval invasion of intestinal epithelium. Veterinary Research, 54, 86. [CrossRef] [PubMed] [Google Scholar]
  58. Werner C, Stubbs MT, Krauth-Siegel RL, Klebe G. 2005. The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. Journal of Molecular Biology, 349, 597–607. [CrossRef] [PubMed] [Google Scholar]
  59. Williams RB. 1999. Three enzymes newly identified from the genus Eimeria and two more newly identified from E. maxima, leading to the discovery of some aliphatic acids with activity against coccidia of the domesticated fowl. Veterinary Research Communications, 23, 151–163. [CrossRef] [PubMed] [Google Scholar]
  60. Wilson DF, Cember ATJ, Matschinsky FM. 2018. Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells. Journal of Applied Physiology, 125, 419–428. [CrossRef] [PubMed] [Google Scholar]
  61. Wu Z, Nagano I, Takahashi Y, Maekawa Y. 2016. Practical methods for collecting Trichinella parasites and their excretory-secretory products. Parasitology International, 65, 591–595. [CrossRef] [PubMed] [Google Scholar]
  62. Xu J, Liu RD, Bai SJ, Hao HN, Yue WW, Xu YXY, Long SR, Cui J, Wang ZQ. 2020. Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells. PLoS Neglected Tropical Diseases, 14, e0008269. [CrossRef] [PubMed] [Google Scholar]
  63. Xu J, Yang F, Yang DQ, Jiang P, Liu RD, Zhang X, Cui J, Wang ZQ. 2018. Molecular characterization of Trichinella spiralis galectin and its participation in larval invasion of host’s intestinal epithelial cells. Veterinary Research, 49, 79. [CrossRef] [PubMed] [Google Scholar]
  64. Xu J, Yue WW, Xu YXY, Hao HN, Liu RD, Long SR, Wang ZQ, Cui J. 2021. Molecular characterization of a novel aspartyl protease-1 from Trichinella spiralis. Research in Veterinary Science, 134, 1–11. [CrossRef] [PubMed] [Google Scholar]
  65. Xu YXY, Zhang XZ, Weng MM, Cheng YK, Liu RD, Long SR, Wang ZQ, Cui J. 2022. Oral immunization of mice with recombinant Lactobacillus plantarum expressing a Trichinella spiralis galectin induces an immune protection against larval challenge. Parasites & Vectors, 15, 475. [CrossRef] [PubMed] [Google Scholar]
  66. Yan SW, Cheng YK, Lu QQ, Zhang R, Dan Liu R, Long SR, Wang ZQ, Cui J. 2024. Characterization of a novel dipeptidyl peptidase 1 of Trichinella spiralis and its participation in larval invasion. Acta Tropica, 249, 107076. [CrossRef] [PubMed] [Google Scholar]
  67. Yan SW, Hu YY, Song YY, Ren HN, Shen JM, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. 2021. Characterization of a Trichinella spiralis cathepsin X and its promotion for the larval invasion of mouse intestinal epithelial cells. Veterinary Parasitology, 297, 109160. [CrossRef] [PubMed] [Google Scholar]
  68. Yan SW, Zhang R, Guo X, Wang BN, Long SR, Liu RD, Wang ZQ, Cui J. 2023. Trichinella spiralis dipeptidyl peptidase 1 suppressed macrophage cytotoxicity by promoting M2 polarization via the STAT6/PPARγ pathway. Veterinary Research, 54, 77. [CrossRef] [PubMed] [Google Scholar]
  69. Yang F, Yang DQ, Song YY, Guo KX, Li YL, Long SR, Jiang P, Cui J, Wang ZQ. 2019. In vitro silencing of a serine protease inhibitor suppresses Trichinella spiralis invasion, development, and fecundity. Parasitology Research, 118, 2247–2255. [CrossRef] [PubMed] [Google Scholar]
  70. Yue WW, Yan SW, Zhang R, Cheng YK, Liu RD, Long SR, Zhang X, Wang ZQ, Cui J. 2022. Characterization of a novel pyruvate kinase from Trichinella spiralis and its participation in sugar metabolism, larval molting and development. PLoS Neglected Tropical Diseases, 16, e0010881. [CrossRef] [PubMed] [Google Scholar]
  71. Yue X, Sun XY, Liu F, Hu CX, Bai Y, Da Yang Q, Zhang X, Cui J, Wang ZQ. 2020. Molecular characterization of a Trichinella spiralis serine proteinase. Veterinary Research, 51, 125. [CrossRef] [PubMed] [Google Scholar]
  72. Zeng J, Zhang R, Ning Ma K, Han LL, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. 2022. Characterization of a novel aminopeptidase P from Trichinella spiralis and its participation in the intrusion of intestinal epithelial cells. Experimental Parasitology, 242, 108376. [CrossRef] [PubMed] [Google Scholar]
  73. Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. 2023. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Research in Veterinary Sciences, 165, 105075. [CrossRef] [Google Scholar]
  74. Zhang R, Zhang Y, Yan SW, Cheng YK, Zheng WW, Long SR, Wang ZQ, Cui J. 2024. Galactomannan inhibits Trichinella spiralis invasion of intestinal epithelium cells and enhances antibody-dependent cellular cytotoxicity related killing of larvae by driving macrophage polarization. Parasite, 31, 6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  75. Zhang XZ, Sun XY, Bai Y, Song YY, Hu CX, Li X, Cui J, Wang ZQ. 2020. Protective immunity in mice vaccinated with a novel elastase-1 significantly decreases Trichinella spiralis fecundity and infection. Veterinary Research, 51, 43. [CrossRef] [PubMed] [Google Scholar]
  76. Zhang XZ, Wang ZQ, Cui J. 2022. Epidemiology of trichinellosis in the People’s Republic of China during 2009–2020. Acta Tropica, 229, 106388. [CrossRef] [PubMed] [Google Scholar]
  77. Zhang XZ, Yue WW, Bai SJ, Hao HN, Song YY, Long SR, Dan Liu R, Cui J, Wang ZQ. 2022. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection. Acta Tropica, 226, 106263. [CrossRef] [PubMed] [Google Scholar]
  78. Zhang Y, Wang Y, Wang R, Shen Y, Xu J, Webster TJ, Fang Y. 2018. Personalized nanomedicine: a rapid, sensitive, and selective UV-vis spectrophotometry method for the quantification of nanostructured PEG-asparaginase activity in children’s plasma. International Journal of Nanomedicine, 13, 6337–6344. [CrossRef] [Google Scholar]
  79. Zhuo TX, Wang Z, Song YY, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. 2021. Characterization of a novel glutamine synthetase from Trichinella spiralis and its participation in larval acid resistance, molting, and development. Frontiers in Cell and Developmental Biology, 9, 729402. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.