Open Access
Issue
Parasite
Volume 31, 2024
Article Number 74
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2024074
Published online 28 November 2024
  1. Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, Ansari JM, Jefferson KK, Cava F, Jacobs-Wagner C. 2017. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proceedings of the National Academy of Sciences, 114(5), E781–E790. [CrossRef] [PubMed] [Google Scholar]
  2. Adegoke A, Kumar D, Bobo C, Rashid MI, Durrani AZ, Sajid MS, Karim S. 2020. Tick-borne pathogens shape the native microbiome within tick vectors. Microorganisms, 8(9), 1299. [CrossRef] [PubMed] [Google Scholar]
  3. Akram F, Haq IU, Roohi A, Akram R. 2022. Acinetobacter indicus CCS-12: a new bacterial source for the production and biochemical characterization of thermostable chitinase with promising antifungal activity. Waste and Biomass Valorization, 13(7), 3371–3388. [CrossRef] [Google Scholar]
  4. Anderson JF, Magnarelli LA. 2008. Biology of ticks. Infectious Disease Clinics of North America, 22(2), 195–215. [CrossRef] [PubMed] [Google Scholar]
  5. Benyedem H, Lekired A, Mhadhbi M, Dhibi M, Romdhane R, Chaari S, Rekik M, Ouzari H-I, Hajji T, Darghouth MA. 2022. First insights into the microbiome of Tunisian Hyalomma ticks gained through next-generation sequencing with a special focus on H. scupense. PLoS One, 17(5), e0268172. [CrossRef] [PubMed] [Google Scholar]
  6. Binetruy F, Dupraz M, Buysse M, Duron O. 2019. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites & Vectors, 12(1), 1–10. [CrossRef] [PubMed] [Google Scholar]
  7. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. [CrossRef] [PubMed] [Google Scholar]
  8. Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. 2017. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 7, 236. [CrossRef] [PubMed] [Google Scholar]
  9. Buysse M, Floriano AM, Gottlieb Y, Nardi T, Comandatore F, Olivieri E, Giannetto A, Palomar AM, Makepeace BL, Bazzocchi C. 2021. A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum. eLife, 10, e72747. [CrossRef] [PubMed] [Google Scholar]
  10. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. [CrossRef] [PubMed] [Google Scholar]
  11. Childs JE, Paddock CD. 2002. Passive surveillance as an instrument to identify risk factors for fatal Rocky Mountain spotted fever: is there more to learn? American Journal of Tropical Medicine and Hygiene, 66(5), 450–457. [CrossRef] [PubMed] [Google Scholar]
  12. Choubdar N, Karimian F, Koosha M, Oshaghi MA. 2021. An integrated overview of the bacterial flora composition of Hyalomma anatolicum, the main vector of CCHF. PLoS Neglected Tropical Diseases, 15(6), e0009480. [CrossRef] [PubMed] [Google Scholar]
  13. Cowdry E. 1925. A group of microorganisms transmitted hereditarily in ticks and apparently unassociated with disease. Journal of Experimental Medicine, 41(6), 817. [CrossRef] [PubMed] [Google Scholar]
  14. Díaz-Sánchez S, Hernández-Jarguín A, Torina A, de Mera IGF, Blanda V, Caracappa S, Gortazar C, de la Fuente J. 2019. Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. Ticks and Tick-Borne Diseases, 10(2), 336–343. [CrossRef] [PubMed] [Google Scholar]
  15. Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. 2021. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Scientific Reports, 11(1), 3030. [CrossRef] [PubMed] [Google Scholar]
  16. Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, Loire E, Ménard C, Bouchez O, Vavre F. 2018. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Current Biology, 28(12), 1896–1902. [CrossRef] [PubMed] [Google Scholar]
  17. Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciolek T, Martino C, Zhu Q, Birmingham A, Vázquez‐Baeza Y. 2020. QIIME 2 enables comprehensive end‐to‐end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioinformatics, 70(1), e100. [CrossRef] [PubMed] [Google Scholar]
  18. Estrada-Peña A, Cabezas-Cruz A, Obregón D. 2020. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens, 9(4), 309. [CrossRef] [PubMed] [Google Scholar]
  19. Gall CA, Reif KE, Scoles GA, Mason KL, Mousel M, Noh SM, Brayton KA. 2016. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME Journal, 10(8), 1846–1855. [CrossRef] [PubMed] [Google Scholar]
  20. Guizzo MG, Parizi LF, Nunes RD, Schama R, Albano RM, Tirloni L, Oldiges DP, Vieira RP, Oliveira WHC, Leite MdS. 2017. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Scientific Reports, 7(1), 17554. [CrossRef] [PubMed] [Google Scholar]
  21. Hayes S, Burgdorfer W. 1982. Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis. Infection and Immunity, 37(2), 779–785. [CrossRef] [PubMed] [Google Scholar]
  22. Jutras BL, Lochhead RB, Kloos ZA, Biboy J, Strle K, Booth CJ, Govers SK, Gray J, Schumann P, Vollmer W. 2019. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proceedings of the National Academy of Sciences, 116(27), 13498–13507. [CrossRef] [PubMed] [Google Scholar]
  23. Karim S, Budachetri K, Mukherjee N, Williams J, Kausar A, Hassan MJ, Adamson S, Dowd SE, Apanskevich D, Arijo A. 2017. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Neglected Tropical Diseases, 11(6), e0005681. [CrossRef] [PubMed] [Google Scholar]
  24. Kasi KK, von Arnim F, Schulz A, Rehman A, Chudhary A, Oneeb M, Sas MA, Jamil T, Maksimov P, Sauter‐Louis C. 2020. Crimean‐Congo haemorrhagic fever virus in ticks collected from livestock in Balochistan, Pakistan. Transboundary and Emerging Diseases, 67(4), 1543–1552. [CrossRef] [PubMed] [Google Scholar]
  25. Kopp N, Diaz D, Amacker M, Odongo DO, Beier K, Nitsch C, Bishop RP, Daubenberger CA. 2009. Identification of a synthetic peptide inducing cross-reactive antibodies binding to Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, Hyalomma anatolicum anatolicum and Rhipicephalus appendiculatus BM86 homologues. Vaccine, 28(1), 261–269. [CrossRef] [PubMed] [Google Scholar]
  26. Kumar D, Sharma SR, Adegoke A, Kennedy A, Tuten HC, Li AY, Karim S. 2022. Recently evolved Francisella-like endosymbiont outcompetes an ancient and evolutionarily associated Coxiella-like endosymbiont in the lone star tick (Amblyomma americanum) linked to the Alpha-Gal Syndrome. Frontiers in Cellular and Infection Microbiology, 12, 787209. [CrossRef] [PubMed] [Google Scholar]
  27. Laudadio I, Fulci V, Palone F, Stronati L, Cucchiara S, Carissimi C. 2018. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS: A Journal of Integrative Biology, 22(4), 248–254. [CrossRef] [Google Scholar]
  28. Madder M, Horak I, Stoltsz H. 2014. Tick identification, Vol. 58. Faculty of Veterinary Science University of Pretoria: Pretoria. [Google Scholar]
  29. Manjunathachar HV, Kumar B, Saravanan BC, Choudhary S, Mohanty AK, Nagar G, Chigure G, Ravi Kumar GV, de la Fuente J, Ghosh S. 2019. Identification and characterization of vaccine candidates against Hyalomma anatolicum – Vector of Crimean‐Congo haemorrhagic fever virus. Transboundary and Emerging Diseases, 66(1), 422–434. [CrossRef] [PubMed] [Google Scholar]
  30. Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, de la Fuente J, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. 2020. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines, 8(4), 702. [CrossRef] [PubMed] [Google Scholar]
  31. Mateos-Hernández L, Obregón D, Wu-Chuang A, Maye J, Bornères J, Versillé N, de La Fuente J, Díaz-Sánchez S, Bermúdez-Humarán LG, Torres-Maravilla E. 2021. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Frontiers in Immunology, 12, 704621. [CrossRef] [PubMed] [Google Scholar]
  32. Mesquita E, da Costa DP, Meirelles LN, Camargo MG, Corrêa TA, Bittencourt VREP, da Silva Coelho I, Santos HA, Humber RA, Golo PS. 2023. Entomopathogenic fungus treatment changes the gut bacterial diversity of Rhipicephalus microplus ticks. Parasites & Vectors, 16(1), 185. [CrossRef] [PubMed] [Google Scholar]
  33. Narasimhan S, Fikrig E. 2015. Tick microbiome: the force within. Trends in Parasitology, 31(7), 315–323. [CrossRef] [PubMed] [Google Scholar]
  34. Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, DePonte K, Fish D, Fikrig E. 2014. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host & Microbe, 15(1), 58–71. [CrossRef] [PubMed] [Google Scholar]
  35. Pacheco I, Díaz-Sánchez S, Contreras M, Villar M, Cabezas-Cruz A, Gortázar C, de la Fuente J. 2021. Probiotic bacteria with high alpha-Gal content protect zebrafish against mycobacteriosis. Pharmaceuticals, 14(7), 635. [CrossRef] [PubMed] [Google Scholar]
  36. Paules CI, Marston HD, Bloom ME, Fauci AS. 2018. Tickborne diseases – confronting a growing threat. New England Journal of Medicine, 379(8), 701–703. [CrossRef] [PubMed] [Google Scholar]
  37. Perveen F. 2011. Distribution and identification of ixodid tick species on livestock in northern Pakistan. Journal of Agriculture, Science and Technology, 1, 73–81. [Google Scholar]
  38. Perveen N, Muzaffar SB, Vijayan R, Al-Deeb MA. 2022. Microbial composition in Hyalomma anatolicum collected from livestock in the United Arab Emirates using next-generation sequencing. Parasites & Vectors, 15(1), 30. [CrossRef] [PubMed] [Google Scholar]
  39. Poudel R, Jumpponen A, Schlatter DC, Paulitz T, Gardener BM, Kinkel LL, Garrett K. 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology, 106(10), 1083–1096. [CrossRef] [PubMed] [Google Scholar]
  40. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e9490. [CrossRef] [PubMed] [Google Scholar]
  41. Rehman A, Nijhof AM, Sauter-Louis C, Schauer B, Staubach C, Conraths FJ. 2017. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan. Parasites & Vectors, 10(1), 190. [CrossRef] [PubMed] [Google Scholar]
  42. Rojas-Jaimes J, Lindo-Seminario D, Correa-Núñez G, Diringer B. 2021. Characterization of the bacterial microbiome of Rhipicephalus (Boophilus) microplus collected from Pecari tajacu “Sajino” Madre de Dios, Peru. Scientific Reports, 11(1), 6661. [CrossRef] [PubMed] [Google Scholar]
  43. Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, Paz-Bailey G, Waterman SH, Drexler NA, Kersh GJ. 2018. Vital signs: trends in reported vectorborne disease cases – United States and Territories, 2004–2016. Morbidity and Mortality Weekly Report, 67(17), 496. [CrossRef] [PubMed] [Google Scholar]
  44. Sacchi L, Bigliardi E, Corona S, Beninati T, Lo N, Franceschi A. 2004. A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue & Cell, 36(1), 43–53. [CrossRef] [PubMed] [Google Scholar]
  45. Scoles GA. 2004. Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. Journal of Medical Entomology, 41(3), 277–286. [CrossRef] [PubMed] [Google Scholar]
  46. Segura JA, Isaza JP, Botero LE, Alzate JF, Gutiérrez LA. 2020. Assessment of bacterial diversity of Rhipicephalus microplus ticks from two livestock agroecosystems in Antioquia, Colombia. PLoS One, 15(7), e0234005. [CrossRef] [PubMed] [Google Scholar]
  47. Sheikh AS, Sheikh AA, Sheikh NS, Asif M, Afridi F, Malik MT. 2005. Bi-annual surge of Crimean-Congo haemorrhagic fever (CCHF): a five-year experience. International Journal of Infectious Diseases, 9(1), 37–42. [CrossRef] [Google Scholar]
  48. Tirloni L, Braz G, Nunes RD, Gandara ACP, Vieira LR, Assumpcao TC, Sabadin GA, da Silva RM, Guizzo MG, Machado JA. 2020. A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Scientific Reports, 10(1), 18296. [CrossRef] [PubMed] [Google Scholar]
  49. Tokarz R, Tagliafierro T, Sameroff S, Cucura DM, Oleynik A, Che X, Jain K, Lipkin WI. 2019. Microbiome analysis of Ixodes scapularis ticks from New York and Connecticut. Ticks and Tick-Borne Diseases, 10(4), 894–900. [CrossRef] [PubMed] [Google Scholar]
  50. Walker A, Matthews J, Preston P. 2005. The development of electronic keys for the identification of ticks. International Journal of Tropical Insect Science, 25(1), 2–5. [CrossRef] [Google Scholar]
  51. Zhang X-L, Deng Y-P, Yang T, Li L-Y, Cheng T-Y, Liu G-H, Duan D-Y. 2022. Metagenomics of the midgut microbiome of Rhipicephalus microplus from China. Parasites & Vectors, 15(1), 48. [CrossRef] [PubMed] [Google Scholar]
  52. Zhong J, Jasinskas A, Barbour AG. 2007. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One, 2(5), e405. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.