Open Access
Issue |
Parasite
Volume 31, 2024
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/parasite/2024032 | |
Published online | 18 June 2024 |
- Amir A, Sum JS, Lau YL, Vythilingam I, Fong MY. 2013. Colonization of Anopheles cracens: A malaria vector of emerging importance. Parasites and Vectors, 6(1), 81. [CrossRef] [Google Scholar]
- Araujo MDS, Andrade AO, Santos N, Pereira DB, Costa GDS, Paulo PFM, Rios CT, Moreno M, Pereira-da-Silva LH, Medeiros JF. 2019. Brazil’s first free-mating laboratory colony of Nyssorhynchus darlingi. Revista da Sociedade Brasileira de Medicina Tropical, 52, e20190159. [CrossRef] [PubMed] [Google Scholar]
- Baker RH. 1964. Mating problems as related to the establishment and maintenance of laboratory colonies of mosquitos. Bulletin of the World Health Organization, 31, 467–468. [PubMed] [Google Scholar]
- Baker RH, Drench WL, Kitzmiller JB. 1962. Induced copulation in Anopheles mosquitoes. Mosquito News, 22(1), 16–17. [Google Scholar]
- Birnberg L, Aranda C, Talavera S, Núñez AI, Escosa R, Busquets N. 2020. Laboratory colonization and maintenance of Anopheles atroparvus from the Ebro Delta, Spain. Parasites and Vectors, 13(1), 394. [CrossRef] [Google Scholar]
- Capone A, Ricci I, Damiani C, Mosca M, Rossi P, Scuppa P, Crotti E, Epis S, Angeletti M, Valzano M, Sacchi L, Bandi C, Daffonchio D, Mandrioli M, Favia G. 2013. Interactions between Asaia, Plasmodium and Anopheles: New insights into mosquito symbiosis and implications in Malaria Symbiotic Control. Parasites and Vectors, 6(1), 182. [CrossRef] [Google Scholar]
- Caragata EP, Dutra HLC, Sucupira PHF, Ferreira AGA, Moreira LA. 2021. Wolbachia as translational science: Controlling mosquito-borne pathogens. Trends in Parasitology, 37(12), 1050–1067. [CrossRef] [PubMed] [Google Scholar]
- Ciubotariu II, Jones CM, Kobayashi T, Bobanga T, Muleba M, Pringle JC, Stevenson JC, Carpi G, Norris DE. 2020. Genetic diversity of Anopheles coustani (Diptera: Culicidae) in malaria transmission foci in Southern and Central Africa. Journal of Medical Entomology, 57(6), 1782–1792. [CrossRef] [PubMed] [Google Scholar]
- Clements A. 1999. The biology of mosquitoes. Vol. 2: Sensory reception and behaviour, vol 2, Cabi Publishing: Oxforshire. [CrossRef] [Google Scholar]
- Coetzee M. 1983. Chromosomal and cross-mating evidence for two species within Anopheles (A.) coustani (Diptera: Culicidae). Systematic Entomology, 8(2), 137–141. [CrossRef] [Google Scholar]
- Coetzee M. 1994. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani (Diptera: Culicidae). Mosquito Systematics, 26, 125–131. [Google Scholar]
- Coetzee M. 2020. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria Journal, 19(1), 70. [CrossRef] [PubMed] [Google Scholar]
- Diallo D, Sall AA, Buenemann M, Chen R, Faye O, Diagne CT, Faye O, Ba Y, Dia I, Watts D, Weaver SC, Hanley KA, Diallo M. 2012. Landscape ecology of sylvatic Chikungunya Virus and mosquito vectors in Southeastern Senegal. PLOS Neglected Tropical Diseases, 6(6), e1649. [CrossRef] [PubMed] [Google Scholar]
- Dyé L. 1902. Notes et observations sur les Culicides. Archives de Parasitologie, 6, 359–376. [Google Scholar]
- Finney M, McKenzie BA, Rabaovola B, Sutcliffe A, Dotson E, Zohdy S. 2021. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malaria Journal, 20(1), 25. [CrossRef] [PubMed] [Google Scholar]
- Fontenille D. 1989. Clé de détermination des moustiques adultes de Madagascar, Antananarivo, Madagascar: Internal Document -Unité d’entomologie -Institut Pasteur de Madagascar. https://www.pasteur.mg/. [Google Scholar]
- Fornadel CM, Norris LC, Franco V, Norris DE. 2011. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector-Borne and Zoonotic Diseases, 11(8), 1173–1179. [CrossRef] [PubMed] [Google Scholar]
- Goupeyou-Youmsi J, Rakotondranaivo T, Puchot N, Peterson I, Girod R, Vigan-Womas I, Paul R, Ndiath MO, Bourgouin C. 2020. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages of Madagascar. Parasites and Vectors, 13(1), 430. [CrossRef] [Google Scholar]
- Grjebine A. 1966. Insectes diptères Culicidae Anophelinae. Faune de Madagascar. Paris: ORSTOM, CNRS. p. 489. [Google Scholar]
- Hamon J, Mouchet J. 1961. Les vecteurs secondaires du paludisme humain en Afrique. Médecine Tropicale, 21(Special), 643–660. [Google Scholar]
- Jean Jose Nepomichene TN. 2017. Biologie d’Anopheles coustani (Diptera : Culicidae) et implications dans la transmission du Plasmodium et du Virus de la Fièvre de la Vallée du Rift à Madagascar. In École Doctorale Sciences de la Vie et de l’Environnement, Madagascar: Université d’Antananarivo. PhD Thesis. [Google Scholar]
- Lardeux F, Quispe V, Tejerina R, Rodriguez R, Torrez L, Bouchite B, Chavez T. 2007. Laboratory colonization of Anopheles pseudopunctipennis (Diptera: Culicidae) without forced mating. Comptes Rendus Biologie, 330(8), 571–575. [CrossRef] [Google Scholar]
- Laveran A. 1900. Sur un Anopheles provenant de Madagascar. Comptes Rendus de la Société de Biologie, 52, 109–110. [Google Scholar]
- Lobo NF, Laurent BS, Sikaala CH, Hamainza B, Chanda J, Chinula D, Krishnankutty SM, Mueller JD, Deason NA, Hoang QT, Boldt HL, Thumloup J, Stevenson J, Seyoum A, Collins FH. 2015. Unexpected diversity of Anopheles species in Eastern Zambia: Implications for evaluating vector behavior and interventions using molecular tools. Scientific Reports, 5(1), 17952. [CrossRef] [PubMed] [Google Scholar]
- MR4. Methods in Anopheles Research. 2015 [cited; Available from: https://www.beiresources.org/Portals/2/VectorResources/2016%20Methods%20in%20Anopheles%20Research%20full%20manual.pdf. [Google Scholar]
- Mwangangi JM, Muturi EJ, Muriu SM, Nzovu J, Midega JT, Mbogo C. 2013. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasites and Vectors, 6(1), 114. [CrossRef] [Google Scholar]
- Nepomichene TN, Andrianaivolambo L, Boyer S, Bourgouin C. 2017. Efficient method for establishing F1 progeny from wild populations of Anopheles mosquitoes. Malaria Journal, 16(1), 21. [CrossRef] [PubMed] [Google Scholar]
- Nepomichene TN, Tata E, Boyer S. 2015. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malaria Journal, 14, 475. [CrossRef] [PubMed] [Google Scholar]
- Ow Yang CK, St Maria FL, Wharton RH. 1963. Maintenance of a laboratory colony of Anopheles maculatus (Theobald) by artificial mating. Mosquito News, 23, 34–35. [Google Scholar]
- Puchot N, Lecoq M-T, Carinci R, Duchemin JB, Gendrin M, Bourgouin C. 2022. Establishment of a colony of Anopheles darlingi from French Guiana for vector competence studies on malaria transmission. Frontiers in Tropical Diseases, 3. https://www.frontiersin.org/articles/10.3389/fitd.2022.949300. [CrossRef] [Google Scholar]
- Ratovonjato J, Olive M-M, Tantely LM, Andrianaivolambo L, Tata E, Razainirina J, Jeanmaire E, Reynes J-M, Elissa N. 2010. Detection, isolation, and genetic characterization of Rift Valley Fever Virus from Anopheles (Anopheles) coustani, Anopheles (Anopheles) squamosus, and Culex (Culex) antennatus of the Haute Matsiatra Region, Madagascar. Vector-Borne and Zoonotic Diseases, 11(6), 753–759. [Google Scholar]
- Senevet G. 1932. À propos d’Anopheles coustani Laveran. Archives de l’Institut Pasteur d’Algérie, 10, 478–484. [Google Scholar]
- Shane JL, Grogan CL, Cwalina C, Lampe DJ. 2018. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nature Communications, 9(1), 4127. [CrossRef] [PubMed] [Google Scholar]
- Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HC, Harbach RE, Hay SI. 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: Occurrence data, distribution maps and bionomic precis. Parasites and Vectors, 3, 117. [CrossRef] [Google Scholar]
- Tantely ML, Rakotoniaina JC, Tata E, Andrianaivolambo L, Razafindrasata F, Fontenille D, Elissa N. 2013. Biology of mosquitoes that are potential vectors of Rift Valley Fever virus in different biotopes of the central highlands of Madagascar. Journal of Medical Entomologie, 50(3), 603–610. [CrossRef] [PubMed] [Google Scholar]
- Tripet F, Touré YT, Dolo G, Lanzaro GC. 2003. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. American Journal of Tropical Medicine and Hygiene, 68(1), 1–5. [CrossRef] [Google Scholar]
- Villarreal-Trevino C, Vasquez GM, Lopez-Sifuentes VM, Escobedo-Vargas K, Huayanay-Repetto A, Linton YM, Flores-Mendoza C, Lescano AG, Stell FM. 2015. Establishment of a free-mating, long-standing and highly productive laboratory colony of Anopheles darlingi from the Peruvian Amazon. Malaria Journal, 14, 227. [CrossRef] [PubMed] [Google Scholar]
- WHO. 2023. World Malaria Report 2023, ISBN 978-92-4-008617-3. [Google Scholar]
- Yaw Asare A, Mariangela B, Guiyun Y. 2016. Secondary malaria vectors of Sub-Saharan Africa: Threat to malaria elimination on the continent? in: Current Topics in Malaria, Chapter 20, Alfonso JR-M, Ed. Rijeka, Croatia: IntechOpen. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.