Open Access
Issue
Parasite
Volume 31, 2024
Article Number 36
Number of page(s) 12
DOI https://doi.org/10.1051/parasite/2024035
Published online 02 July 2024
  1. Agniwo P, Sidibé B, Diakité AT, Niaré SD, Guindo H, Akplogan A, Ibikounlé M, Boissier J, Dabo A. 2023. Ultrasound aspects and risk factors associated with urogenital schistosomiasis among primary school children in Mali. Infectious Diseases of Poverty, 12(1), 40–51. [CrossRef] [PubMed] [Google Scholar]
  2. Bassett T. 2009. Mobile pastoralism on the brink of land privatization in Northern Côte d’Ivoire. Geoforum, 40(5), 756–766. [CrossRef] [Google Scholar]
  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme M. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier (France): Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II. Available from http://www.univmontp2.fr/~genetix/genetix/genetix.htm (accessed on 2022-07-20). [Google Scholar]
  4. Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, Boissier J. 2023. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosoma curassoni, S. bovis, S. haematobium and their hybrids. Parasites & Vectors, 16, 121–131. [CrossRef] [PubMed] [Google Scholar]
  5. Boissier J, Mouahid G, Moné H. 2019. Schistosoma spp, in water and sanitation for the 21st century: health and microbiological aspects of excreta and wastewater management (global water pathogen project), in Rose JB, Jiménez-Cisneros B, Editors. Part 3: Specific excreted pathogens: environmental and epidemiology aspects – Section 4: Helminths, Robertson L, Editor. E. Lansing, MI: Michigan State University, UNESCO. https://doi.org/10.14321/waterpathogens.45. [Google Scholar]
  6. Bremond P, Sellin B, Sellin E, Nameoua B, Labbo R, Theron A. 1993. Arguments for the modification of the genome (introgression) of the human parasite Schistosoma haematobium by genes from S. bovis, in Niger. Comptes Rendus de l’Académie des Sciences. Série III, Sciences de la Vie, 316(7), 667–670. [Google Scholar]
  7. Brémond P. 1990. Application des techniques électrophorétiques à deux aspects de la biologie des populations de schistosomes africains : Caractérisation des parasites et de leurs hôtes intermédiaires; détection des schistosomes hybrides, in Les Schistosomes, in Conférence International sur la Situation Épidémiologique et Stratégies de Lutte contre les Schistosomiases en Afrique de l’Ouest. Bobo Dioulasso: IRD, OCCGE, p. 182–189. [Google Scholar]
  8. Brémond P, Mouchet F, Chevallier P, Sellin E, Vera C, Sellin B. 1990. Flux génique entre Schistosoma bovis et S. curassoni au Niger. Bulletin de la Société Française de Parasitologie, 8, 708. [Google Scholar]
  9. Coulibaly G, Madsen H. 1990. Seasonal density fluctuations of intermediate hosts of schistosomes in two streams in Bamako, Mali. Journal of African Zoology, 104(3), 201–212. [Google Scholar]
  10. De Bont J, Vercruysse J. 1997. The epidemiology and control of cattle schistosomiasis. Parasitology Today, 13(7), 255–262. [CrossRef] [Google Scholar]
  11. Diaw O, Vassiliadès G. 1987. Épidémiologie des schistosomoses du bétail au Sénégal. Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 40(3), 265–274. [Google Scholar]
  12. Djuikwo-Teukeng FF, Kouam Simo A, Allienne JF, Rey O, Njayou Ngapagna A, Tchuem-Tchuente LA, Boissier J. 2019. Population genetic structure of Schistosoma bovis in Cameroon. Parasites & Vectors, 12, 56–67. [CrossRef] [PubMed] [Google Scholar]
  13. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  14. Francis RM. 2017. Pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32. [CrossRef] [PubMed] [Google Scholar]
  15. Giovanoli Evack J, Kouadio JN, Achi LY, Bonfoh B, N’Goran EK, Zinsstag J, Jürg Utzinger J, Balmer O. 2024. Genetic characterization of schistosome species from cattle in Côte d’Ivoire. Parasites & Vectors, 17, 122–138. [CrossRef] [PubMed] [Google Scholar]
  16. Goudet J, Perrin N, Waser P. 2002. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Molecular Ecology, 11(6), 1103–1114. [CrossRef] [PubMed] [Google Scholar]
  17. Grétillat S. 1962. Une nouvelle zoonose, la “Bilharziose Ouest Africaine” à Schistosoma curassoni Brumpt, 1931 commune à l’homme et aux ruminants domestiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 255(15), 1805. [Google Scholar]
  18. Huyse T, Webster BL, Geldof S, Stothard JR, Diaw OT, Rollinson D. 2009. Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathogens, 5(9), e1000571. [CrossRef] [PubMed] [Google Scholar]
  19. King KC, Stelkens RB, Webster JP, Smith DF, Brockhurst MA. 2015. Hybridization in parasites: consequences for adaptive evolution, pathogenesis, and public health in a changing world. PLoS Pathogens, 11(9), e1005098. [CrossRef] [PubMed] [Google Scholar]
  20. Lafferty KD. 2009. The ecology of climate change and infectious diseases. Ecology, 90(4), 888–900. [CrossRef] [PubMed] [Google Scholar]
  21. Léger E, Borlase A, Fall C, Diouf N, Diop S, Yasenev L, Catalano S, Thiam CT, Ndiaye A, Emery A, Morrell A, Rabone M, Ndao M, Faye B, Rollinson D, Rudge WJ, Sène M, Webster JP. 2020. Prevalence and distribution of schistosomiasis in human, livestock, and snail populations in northern Senegal: a one health epidemiological study of a multi-host system. Lancet Planetary Health, 4(8), e330–e342. [CrossRef] [Google Scholar]
  22. Léger E, Webster JP. 2016. Hybridizations within the genus Schistosoma: implications for evolution, epidemiology and control. Parasitology, 144(1), 65–80. [Google Scholar]
  23. Lockyer AE, Olson PD, Ostergaard P, Rollinson D, Johnston DA, Attwood SW, Southgate VR, Horak P, Snyder SD, Le TH, Agatsuma T, McManus DP, Carmichael AC, Naem S, Littlewood DTJ. 2003. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology, 126(3), 203–224. [CrossRef] [PubMed] [Google Scholar]
  24. Madsen H, Coulibaly G, Furu P. 1987. Distribution of freshwater snails in the river Niger basin in Mali with special reference to the intermediate hosts of schistosomes. Hydrobiologia, 146, 77–88. [CrossRef] [Google Scholar]
  25. Moné H, Mouahid G, Morand S. 1999. The distribution of Schistosoma bovis Sonsino, 1876 in relation to intermediate host mollusc–parasite relationships. Advances in Parasitology, 44, 99–138. [CrossRef] [PubMed] [Google Scholar]
  26. Mouchet F, Bremond P, Théron A. 1989. Preliminary observations on Schistosoma curassoni Brumpt, 1931 in Niger. Transactions of the Royal Society of Tropical Medicine and Hygiene, 83(6), 811. [CrossRef] [PubMed] [Google Scholar]
  27. Ndao M, Belot J, Zinsstag J, Pfister K. 1995. Épidémiologie des helminthoses gastro-intestinales des petits ruminants dans la zone sylvo-pastorale au Sénégal. Veterinary Research, 26(2), 132–139. [PubMed] [Google Scholar]
  28. Ndifon GT, Betterton C, Rollinson D. 1988. Schistosoma curassoni Brumpt, 1931 and S. bovis (Sonsino, 1876) in cattle in northern Nigeria. Journal of Helmintholology, 62(1), 33–34. [CrossRef] [PubMed] [Google Scholar]
  29. Nichols GL, Andersson Y, Lindgren E, Devaux I, Semenza JC. 2014. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases. International Journal of Environmental Research and Public Health, 11(4), 3894–3936. [CrossRef] [PubMed] [Google Scholar]
  30. Ousseini S. 1990. Schistosomoses des ruminants domestiques au Cameroun septentrional. Thèse de Médecine vétérinaire de l’Université Cheikh Anta Diop, Dakar, Sénégal, p. 112. [Google Scholar]
  31. Panzner U, Boissier J. 2021. Natural intra- and interclade human hybrid schistosomes in Africa with considerations on prevention through vaccination. Microorganisms, 9(7), 1465. [CrossRef] [PubMed] [Google Scholar]
  32. Pennance T, Allan F, Emery A, Rabone M, Cable J, Garba AD, Hamidou AA, Webster JP, Rollinson D, Webster BL. 2020. Interactions between Schistosoma haematobium group species and their Bulinus spp. intermediate hosts along the Niger River Valley. Parasites & Vectors, 13, 268–282. [CrossRef] [PubMed] [Google Scholar]
  33. Pritchard J, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. [CrossRef] [PubMed] [Google Scholar]
  34. PRODEVIM. 2022. Mali meat export development program (PRODEVIM). Available from https://bamada.net/ La viande: Quatre usines de viande dans les starting blocs – Bamada.net (accessed 2023-06-12). [Google Scholar]
  35. Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. 2021. Population genetics of African Schistosoma species. Infection Genetics and Evolution, 89, 104727. [CrossRef] [Google Scholar]
  36. Rollinson D, Southgate VR, Vercruysse J, Moore PJ. 1990. Observations on natural and experimental interactions between Schistosoma bovis and S. curassoni from West Africa. Acta Tropica, 47(2), 101–114. [CrossRef] [PubMed] [Google Scholar]
  37. Rosenberg NA. 2004. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137–138. [Google Scholar]
  38. Savassi BAES, Mouahid G, Lasica C, Mahaman SK, Garcia A, Courtin D, Allienne JF, Ibikounlé M, Moné H. 2020. Cattle as natural host for Schistosoma haematobium (Bilharz, 1852) Weinland, 1858 x Schistosoma bovis Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns. Parasitology Research, 119, 2189–2205. [CrossRef] [PubMed] [Google Scholar]
  39. Shuman EK. 2010. Global climate change and infectious diseases. New England Journal of Medicine, 362(12), 1061–1063. [CrossRef] [PubMed] [Google Scholar]
  40. Tanaka H, Tsuji M. 1997. From discovery to eradication of Schistosomiasis in Japan: 1847–1996. International Journal for Parasitology, 27(12), 1465–1480. [CrossRef] [PubMed] [Google Scholar]
  41. Vera C, Mouchet F, Bremond P, Sidiki A, Sellin E, Sellin B. 1992. Natural infection of Bulinus senegalensis by Schistosoma haematobium in a temporary pool focus in niger: characterization by cercarial emergence patterns. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86(1), 62. [CrossRef] [PubMed] [Google Scholar]
  42. Vercruysse J, Southgate VR, Rollinson D. 1984. Schistosoma curassoni brumpt, 1931 in sheep and goats in senegal. Journal of Natural History, 18(6), 969–976. [CrossRef] [Google Scholar]
  43. Webster B, Rollinson D, Stothard J, Huyse T. 2010. Rapid diagnostic multiplex PCR (RD-PCR) to discriminate Schistosoma haematobium and S. bovis. Journal of Helminthology, 84(1), 107–114. [CrossRef] [PubMed] [Google Scholar]
  44. Webster B, Diaw O, Seye M, Webster J, Rollinson D. 2013. Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PLoS Neglected Tropical Diseases, 7(4), e2110. [CrossRef] [PubMed] [Google Scholar]
  45. Webster BL, Rabone M, Pennance T, Webster JP. 2015. Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium. Parasites & Vectors, 8, 432–436. [CrossRef] [PubMed] [Google Scholar]
  46. Weir B, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370. [Google Scholar]
  47. Wright CA, Southgate VR. 1976. Hybridization of schistosomes and some of its implications, in Genetic aspects of host-parasite interactions. Taylor A, Muller R, Editors. Oxford: Blackwell Scientific, p. 55–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.