Open Access
Issue
Parasite
Volume 31, 2024
Article Number 52
Number of page(s) 11
DOI https://doi.org/10.1051/parasite/2024050
Published online 29 August 2024
  1. Cassetta L, Bruderek K, Skrzeczynska-Moncznik J, Osiecka O, Hu X, Rundgren IM, Lin A, Santegoets K, Horzum U, Godinho-Santos A, Zelinskyy G, Garcia-Tellez T, Bjelica S, Taciak B, Kittang AO, Hoing B, Lang S, Dixon M, Muller V, Utikal JS, Karakoc D, Yilmaz KB, Gorka E, Bodnar L, Anastasiou OE, Bourgeois C, Badura R, Kapinska-Mrowiecka M, Gotic M, Ter Laan M, Kers-Rebel E, Krol M, Santibanez JF, Muller-Trutwin M, Dittmer U, de Sousa AE, Esendagli G, Adema G, Lore K, Ersvaer E, Umansky V, Pollard JW, Cichy J, Brandau S. 2020. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. Journal for ImmunoTherapy of Cancer, 8(2), e001223. [CrossRef] [PubMed] [Google Scholar]
  2. Chen L, He B, Hou W, He L. 2017. Cysteine protease inhibitor of Schistosoma japonicum – A parasite-derived negative immunoregulatory factor. Parasitology Research, 116(3), 901–908. [CrossRef] [PubMed] [Google Scholar]
  3. Darden DB, Bacher R, Brusko MA, Knight P, Hawkins RB, Cox MC, Dirain ML, Ungaro R, Nacionales DC, Rincon JC, Gauthier ML, Kladde M, Bihorac A, Brusko TM, Moore FA, Brakenridge SC, Mohr AM, Moldawer LL, Efron PA. 2021. Single-cell RNA-seq of human myeloid-derived suppressor cells in late sepsis reveals multiple subsets with unique transcriptional responses: a pilot study. Shock, 55(5), 587–595. [CrossRef] [PubMed] [Google Scholar]
  4. Dean MJ, Ochoa JB, Sanchez-Pino MD, Zabaleta J, Garai J, Del Valle L, Wyczechowska D, Baiamonte LB, Philbrook P, Majumder R, Vander Heide RS, Dunkenberger L, Thylur RP, Nossaman B, Roberts WM, Chapple AG, Wu J, Hicks C, Collins J, Luke B, Johnson R, Koul HK, Rees CA, Morris CR, Garcia-Diaz J, Ochoa AC. 2021. Severe COVID-19 is characterized by an impaired type I interferon response and elevated levels of arginase producing granulocytic myeloid derived suppressor cells. Frontiers in Immunology, 12, 695972. [CrossRef] [PubMed] [Google Scholar]
  5. Doke M, Fukamachi H, Morisaki H, Arimoto T, Kataoka H, Kuwata H. 2017. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps. Molecular Oral Microbiology, 32(4), 288–300. [CrossRef] [PubMed] [Google Scholar]
  6. el Scheich T, Holtfreter MC, Ekamp H, Singh DD, Mota R, Hatz C, Richter J. 2014. The WHO ultrasonography protocol for assessing hepatic morbidity due to Schistosoma mansoni. Acceptance and evolution over 12 years. Parasitology Research, 113(11), 3915–3925. [CrossRef] [PubMed] [Google Scholar]
  7. Francisco JS, Terra M, Klein GCT, Dias de Oliveira B, Pelajo-Machado M. 2022. The hepatic extramedullary hematopoiesis during experimental murine Schistosomiasis mansoni. Frontiers in Immunology, 13, 955034. [CrossRef] [PubMed] [Google Scholar]
  8. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V. 2006. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8 + T cells. Journal of Clinical Investigation, 116(10), 2777–2790. [CrossRef] [PubMed] [Google Scholar]
  9. Ghassabeh GH, De Baetselier P, Brys L, Noel W, Van Ginderachter JA, Meerschaut S, Beschin A, Brombacher F, Raes G. 2006. Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood, 108(2), 575–583. [CrossRef] [PubMed] [Google Scholar]
  10. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Umansky V. 2019. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. British Journal of Cancer, 120(1), 16–25. [CrossRef] [PubMed] [Google Scholar]
  11. Gryseels B, Polman K, Clerinx J, Kestens L. 2006. Human schistosomiasis. Lancet, 368(9541), 1106–1118. [CrossRef] [PubMed] [Google Scholar]
  12. Guo C, Zhang P, Li J, Zhou C, Yang Z, Zhang Y, Luo Y, Zhou J, Cai Y, Ming Y. 2023. The characteristics of intestinal microbiota in patients with chronic schistosomiasis japonica-induced liver fibrosis by 16S rRNA gene sequence. Frontiers in Microbiology, 14, 1276404. [CrossRef] [PubMed] [Google Scholar]
  13. Hegde S, Leader AM, Merad M. 2021. MDSC: Markers, development, states, and unaddressed complexity. Immunity, 54(5), 875–884. [CrossRef] [PubMed] [Google Scholar]
  14. Hu F, Xie SY, Yuan M, Li YF, Li ZJ, Gao ZL, Lan WM, Liu YM, Xu J, Lin DD. 2021. The dynamics of hepatic fibrosis related to schistosomiasis and its risk factors in a cohort of China. Pathogens, 10(12), 1532. [Google Scholar]
  15. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. 2006. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131. [CrossRef] [PubMed] [Google Scholar]
  16. Janols H, Bergenfelz C, Allaoui R, Larsson AM, Ryden L, Bjornsson S, Janciauskiene S, Wullt M, Bredberg A, Leandersson K. 2014. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. Journal of Leukocyte Biology, 96(5), 685–693. [CrossRef] [PubMed] [Google Scholar]
  17. Kang X, Zhang X, Liu Z, Xu H, Wang T, He L, Zhao A. 2016. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-beta/beta-catenin pathway. Molecular Human Reproduction, 22(7), 499–511. [CrossRef] [PubMed] [Google Scholar]
  18. Ke XD, Shen S, Song LJ, Yu CX, Kikuchi M, Hirayama K, Gao H, Wang J, Yin X, Yao Y, Liu Q, Zhou W. 2017. Characterization of Schistosoma japonicum CP1412 protein as a novel member of the ribonuclease T2 molecule family with immune regulatory function. Parasites & Vectors, 10(1), 89. [CrossRef] [PubMed] [Google Scholar]
  19. Lamsfus Calle C, Fendel R, Singh A, Richie TL, Hoffman SL, Kremsner PG, Mordmuller B. 2021. Expansion of functional myeloid-derived suppressor cells in controlled human malaria infection. Frontiers in Immunology, 12, 625712. [CrossRef] [PubMed] [Google Scholar]
  20. Leonardo L, Kenangalem E, Poespoprodjo JR, Noviyanti R, Price RN, Anstey NM, Minigo G, Kho S. 2022. Increased circulating myeloid-derived suppressor cells in vivax malaria and severe falciparum malaria. Malaria Journal, 21(1), 255. [CrossRef] [PubMed] [Google Scholar]
  21. Li R, Salehi-Rad R, Crosson W, Momcilovic M, Lim RJ, Ong SL, Huang ZL, Zhang T, Abascal J, Dumitras C, Jing Z, Park SJ, Krysan K, Shackelford DB, Tran LM, Liu B, Dubinett SM. 2021. Inhibition of granulocytic myeloid-derived suppressor cells overcomes resistance to immune checkpoint inhibition in LKB1-deficient non-small cell lung cancer. Cancer Research, 81(12), 3295–3308. [CrossRef] [PubMed] [Google Scholar]
  22. LoVerde PT. 2019. Schistosomiasis. Advances in Experimental Medicine and Biology, 1154, 45–70. [CrossRef] [PubMed] [Google Scholar]
  23. Malta KK, Silva TP, Palazzi C, Neves VH, Carmo LAS, Cardoso SJ, Melo RCN. 2021. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biological reviews of the Cambridge Philosophical Society, 96(4), 1404–1420. [CrossRef] [PubMed] [Google Scholar]
  24. McManus DP, Bergquist R, Cai P, Ranasinghe S, Tebeje BM, You H. 2020. Schistosomiasis-from immunopathology to vaccines. Seminars in Immunopathology, 42(3), 355–371. [CrossRef] [PubMed] [Google Scholar]
  25. Morais SB, Figueiredo BC, Assis NRG, Alvarenga DM, de Magalhaes MTQ, Ferreira RS, Vieira AT, Menezes GB, Oliveira SC. 2018. Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation. PLoS Pathogens, 14(2), e1006870. [CrossRef] [PubMed] [Google Scholar]
  26. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA. 2008. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244. [CrossRef] [PubMed] [Google Scholar]
  27. Neamah WH, Busbee PB, Alghetaa H, Abdulla OA, Nagarkatti M, Nagarkatti P. 2020. AhR activation leads to alterations in the gut microbiome with consequent effect on induction of myeloid derived suppressor cells in a CXCR2-dependent manner. International Journal of Molecular Sciences, 21(24), 9613. [CrossRef] [PubMed] [Google Scholar]
  28. Ohmae H, Tanaka M, Hayashi M, Matsuzaki Y, Kurosaki Y, Blas BL, Portillo GG, Sy OS, Irie Y, Yasuraoka K. 1992. Improvement of ultrasonographic and serologic changes in Schistosoma japonicum-infected patients after treatment with praziquantel. American Journal of Tropical Medicine and Hygiene, 46(1), 99–104. [CrossRef] [PubMed] [Google Scholar]
  29. Ostrand-Rosenberg S, Sinha P, Figley C, Long R, Park D, Carter D, Clements VK. 2017. Frontline science: myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. Journal of Leukocyte Biology, 101(5), 1091–1101. [CrossRef] [PubMed] [Google Scholar]
  30. Palmer LJ, Chapple IL, Wright HJ, Roberts A, Cooper PR. 2012. Extracellular deoxyribonuclease production by periodontal bacteria. Journal of Periodontal Research, 47(4), 439–445. [CrossRef] [PubMed] [Google Scholar]
  31. Pan T, Zhong L, Wu S, Cao Y, Yang Q, Cai Z, Cai X, Zhao W, Ma N, Zhang W, Zhang H, Zhou J. 2016. 17beta-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clinical & Experimental Immunology, 185(1), 86–97. [CrossRef] [PubMed] [Google Scholar]
  32. Peng B, Gong H, Tian H, Zhuang Q, Li J, Cheng K, Ming Y. 2020. The study of the association between immune monitoring and pneumonia in kidney transplant recipients through machine learning models. Journal of Translational Medicine, 18(1), 370. [CrossRef] [PubMed] [Google Scholar]
  33. Peng B, Luo Y, Zhuang Q, Li J, Zhang P, Yang M, Zhang Y, Kong G, Cheng K, Ming Y. 2022. The expansion of myeloid-derived suppressor cells correlates with the severity of pneumonia in kidney transplant patients. Frontiers in Medicine (Lausanne), 9, 795392. [CrossRef] [Google Scholar]
  34. Perez C, Botta C, Zabaleta A, Puig N, Cedena MT, Goicoechea I, Alameda D, San Jose-Eneriz E, Merino J, Rodriguez-Otero P, Maia C, Alignani D, Maiso P, Manrique I, Lara-Astiaso D, Vilas-Zornoza A, Sarvide S, Riillo C, Rossi M, Rosinol L, Oriol A, Blanchard MJ, Rios R, Sureda A, Martin J, Martinez R, Bargay J, de la Rubia J, Hernandez MT, Martinez-Lopez J, Orfao A, Agirre X, Prosper F, Mateos MV, Lahuerta JJ, Blade J, San-Miguel JF, Paiva B. 2020. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood, 136(2), 199–209. [CrossRef] [PubMed] [Google Scholar]
  35. Poe SL, Arora M, Oriss TB, Yarlagadda M, Isse K, Khare A, Levy DE, Lee JS, Mallampalli RK, Chan YR, Ray A, Ray P. 2013. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunology, 6(1), 189–199. [CrossRef] [PubMed] [Google Scholar]
  36. Range H, Labreuche J, Louedec L, Rondeau P, Planesse C, Sebbag U, Bourdon E, Michel JB, Bouchard P, Meilhac O. 2014. Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation. Atherosclerosis, 236(2), 448–455. [CrossRef] [PubMed] [Google Scholar]
  37. Rodriguez-Sosa M, Satoskar AR, Calderon R, Gomez-Garcia L, Saavedra R, Bojalil R, Terrazas LI. 2002. Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infection and Immunity, 70(7), 3656–3664. [CrossRef] [PubMed] [Google Scholar]
  38. Rutitzky LI, Bazzone L, Shainheit MG, Joyce-Shaikh B, Cua DJ, Stadecker MJ. 2008. IL-23 is required for the development of severe egg-induced immunopathology in schistosomiasis and for lesional expression of IL-17. Journal of Immunology, 180(4), 2486–2495. [CrossRef] [PubMed] [Google Scholar]
  39. Schmielau J, Finn OJ. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Research, 61(12), 4756–4760. [PubMed] [Google Scholar]
  40. Schwartz C, Fallon PG. 2018. Schistosoma “eggs-iting” the host: granuloma formation and egg excretion. Frontiers in Immunology, 9, 2492. [CrossRef] [PubMed] [Google Scholar]
  41. Shen J, Wang L, Peng M, Liu Z, Zhang B, Zhou T, Sun X, Wu Z. 2019. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model. Parasites & Vectors, 12(1), 457. [CrossRef] [PubMed] [Google Scholar]
  42. Souza COS, Gardinassi LG, Rodrigues V, Faccioli LH. 2020. Monocyte and macrophage-mediated pathology and protective immunity during schistosomiasis. Frontiers in Microbiology, 11, 1973. [CrossRef] [PubMed] [Google Scholar]
  43. Stevenson MM, Valanparambil RM, Tam M. 2022. Myeloid-derived suppressor cells: the expanding world of helminth modulation of the immune system. Frontiers in Immunology, 13, 874308. [CrossRef] [PubMed] [Google Scholar]
  44. Tang H, Liang YB, Chen ZB, Du LL, Zeng LJ, Wu JG, Yang W, Liang HP, Ma ZF. 2017. Soluble egg antigen activates M2 macrophages via the STAT6 and PI3 K pathways, and Schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice. Journal of Cellular Biochemistry, 118(12), 4230–4239. [CrossRef] [PubMed] [Google Scholar]
  45. Uhel F, Azzaoui I, Gregoire M, Pangault C, Dulong J, Tadie JM, Gacouin A, Camus C, Cynober L, Fest T, Le Tulzo Y, Roussel M, Tarte K. 2017. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. American Journal of Respiratory and Critical Care Medicine, 196(3), 315–327. [CrossRef] [PubMed] [Google Scholar]
  46. Van Ginderachter JA, Beschin A, De Baetselier P, Raes G. 2010. Myeloid-derived suppressor cells in parasitic infections. European Journal of Immunology, 40(11), 2976–2985. [CrossRef] [PubMed] [Google Scholar]
  47. Veglia F, Perego M, Gabrilovich D. 2018. Myeloid-derived suppressor cells coming of age. Nature Immunology, 19(2), 108–119. [CrossRef] [PubMed] [Google Scholar]
  48. Venet F, Monneret G. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews Nephrology, 14(2), 121–137. [CrossRef] [PubMed] [Google Scholar]
  49. Xia C, Hu Y, Ward MP, Lynn H, Li S, Zhang J, Hu J, Xiao S, Lu C, Li S, Liu Y, Zhang Z. 2019. Identification of high-risk habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonium in the Poyang Lake region, China: A spatial and ecological analysis. PLoS Neglected Tropical Diseases, 13(6), e0007386. [CrossRef] [PubMed] [Google Scholar]
  50. Yan LT, Wang LL, Yao J, Yang YT, Mao XR, Yue W, Mao YW, Zhou W, Chen QF, Chen Y, Duan ZP, Li JF. 2020. Total bile acid-to-cholesterol ratio as a novel noninvasive marker for significant liver fibrosis and cirrhosis in patients with non-cholestatic chronic hepatitis B virus infection. Medicine (Baltimore), 99(8), e19248. [CrossRef] [PubMed] [Google Scholar]
  51. Yang Q, Qiu H, Xie H, Qi Y, Cha H, Qu J, Wang M, Feng Y, Ye X, Mu J, Huang J. 2017. A Schistosoma japonicum infection promotes the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 Pathway. Journal of Immunology, 198(12), 4716–4727. [CrossRef] [PubMed] [Google Scholar]
  52. Yang R, Cai Z, Zhang Y, Yutzy WHt, Roby KF, Roden RB. 2006. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Research, 66(13), 6807–6815. [CrossRef] [PubMed] [Google Scholar]
  53. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. 2008. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802. [CrossRef] [PubMed] [Google Scholar]
  54. Zhang K, Jiang N, Chen H, Zhang N, Sang X, Feng Y, Chen R, Chen Q. 2021. TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps. Science China Life Sciences, 64(4), 621–632. [CrossRef] [PubMed] [Google Scholar]
  55. Zhang Y, Wu Y, Liu H, Gong W, Hu Y, Shen Y, Cao J. 2021. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection. Parasites & Vectors, 14(1), 497. [CrossRef] [PubMed] [Google Scholar]
  56. Zhong F, Liu C, Zhang X. 2014. Guideline adherence for the treatment of advanced schistosomiasis japonica in Hubei, China. Parasitology Research, 113(12), 4535–4541. [CrossRef] [PubMed] [Google Scholar]
  57. Zhou C, Li J, Guo C, Zhou Z, Yang Z, Zhang Y, Jiang J, Cai Y, Zhou J, Ming Y. 2022. Comparison of intestinal flora between patients with chronic and advanced Schistosoma japonicum infection. Parasites & Vectors, 15(1), 413. [CrossRef] [PubMed] [Google Scholar]
  58. Zhou C, Li J, Guo C, Zhou Z, Yang Z, Zhang Y, Jiang J, Cai Y, Zhou J, Xia M, Ming Y. 2023. Alterations in gut microbiome and metabolite profile of patients with Schistosoma japonicum infection. Parasites & Vectors, 16(1), 346. [CrossRef] [PubMed] [Google Scholar]
  59. Zhou J, Nefedova Y, Lei A, Gabrilovich D. 2018. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Seminars in Immunology, 35, 19–28. [CrossRef] [PubMed] [Google Scholar]
  60. Zhou L, Zhu Y, Mo L, Wang M, Lin J, Zhao Y, Feng Y, Xie A, Wei H, Qiu H, Huang J, Yang Q. 2022. TLR7 controls myeloid-derived suppressor cells expansion and function in the lung of C57BL6 mice infected with Schistosoma japonicum. PLoS Neglected Tropical Diseases, 16(10), e0010851. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.