Open Access
Volume 31, 2024
Article Number 4
Number of page(s) 13
Published online 08 February 2024
  1. Alexander ML, Bergendahl J. 1962. Biological damage in the mature sperm of Drosophila virilis in oxygen and nitrogen with different dose intensities of gamma rays. Genetics, 47, 71–84. [CrossRef] [PubMed] [Google Scholar]
  2. Argilés-Herrero R, Salvador-Herranz G, Parker AG, Zacarés M, Fall AG, Gaye AM, Nawaz A, Takáč P, Vreysen MJB, de Beer CJ. 2023. Near-infrared imaging for automated tsetse pupae sex sorting in support of the sterile insect technique. Parasite, 30, 17. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Ayvaz A, Albayrak S, Karaborklu S. 2008. Gamma radiation sensitivity of the eggs, larvae and pupae of Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Management Science, 64, 505–512. [CrossRef] [PubMed] [Google Scholar]
  4. Bakri A, Mehta K, Lance D. 2021. Sterilizing insects with ionizing radiation, in Sterile Insect Tech. Princ. Pract. Area-Wide Integr. Pest Manag., 2nd edn. Dyck VA, Hendrichs JP, Robinson AS, Editors. CRC Press: Boca Raton. p. 355–398. [Google Scholar]
  5. Bakri A, Heather N, Hendrichs J, Ferris I. 2005. Fifty years of radiation biology in entomology: lessons learned from IDIDAS. Annals of the Entomological Society of America, 98, 1–12. [CrossRef] [Google Scholar]
  6. de Beer CJ, Moyaba P, Boikanyo SNB, Majatladi D, Venter GJ, Vreysen MJB. 2020. Gamma irradiation and male Glossina austeni mating performance. Insects, 11, 522. [CrossRef] [PubMed] [Google Scholar]
  7. de Beer CJ, Moyaba P, Boikanyo SNB, Majatladi D, Yamada H, Venter GJ, Vreysen MJB. 2017. Evaluation of radiation sensitivity and mating performance of Glossina brevipalpis males. PLoS Neglected Tropical Diseases, 11, e0005473. [CrossRef] [PubMed] [Google Scholar]
  8. Belvedere S, Arnone S, Cristofaro M, La Marca A, De Biase A. 2023. Paternity analyses for the planning of SIT Projects against the Red Palm Weevil. Insects, 14, 326. [CrossRef] [PubMed] [Google Scholar]
  9. Bhakthan NMG, Nair KK. 1972. Fine structural damage in the somatic tissues of gamma-irradiated house fly. 1. 1 flight muscles. Annals of the Entomological Society of America, 65, 504–508. [CrossRef] [Google Scholar]
  10. Bimbilé Somda NS, Yamada H, Kraupa C, Mamai W, Maiga H, Kotla SS, Wallner T, Martina C, Bouyer J. 2022. Response of male adult Aedes mosquitoes to gamma radiation in different nitrogen environments. Frontiers in Bioengineering and Biotechnology, 10, 942654. [CrossRef] [PubMed] [Google Scholar]
  11. Bolker B, R Development Core Team. 2020. bbmle: Tools for General Maximum Likelihood Estimation. R package version [Google Scholar]
  12. Bordet G, Lodhi N, Kossenkov A, Tulin A. 2021. Age-related changes of gene expression profiles in Drosophila. Genes, 12, 1982. [CrossRef] [PubMed] [Google Scholar]
  13. Bourtzis K, Vreysen MJB. 2021. Sterile Insect Technique (SIT) and its applications. Insects, 12, 638. [CrossRef] [PubMed] [Google Scholar]
  14. Brower JH. 1976. Dose fractionation: effects on longevity, mating capacity, and sterility of irradiated males of the Indian meal moth. Plodia interpunctella (Lepidoptera: Phycitidae). Canadian Entomologist, 108, 823–826. [CrossRef] [Google Scholar]
  15. Brower JH. 1976. Dose fractionation: effects on longevity, mating capacity, and sterility of irradiated males of the indian meal moth, Plodia interpunctella (Lepidoptera: Psychidae). Canadian Entomologist, 108, 823–826. [CrossRef] [Google Scholar]
  16. Calabrese EJ, Baldwin LA. 1997. The dose determines the stimulation (and poison): Development of a chemical hormesis database. International Journal of Toxicology, 16, 545–559. [CrossRef] [Google Scholar]
  17. Chanie M, Adula D, Bogale B. 2013. Socio-economic assessment of the impacts of trypanosomiasis on cattle in Girja district, Southern Oromia Region, Southern Ethiopia. Acta Parasitologica Globalis, 4, 80–85. [Google Scholar]
  18. Cristofaro M, Fornari C, Mariani F, Cemmi A, Guedj M, Ben Jamaa ML, Msaad Guerfali M, Tabone E, Castellana R, Sasso R, Musmeci S. 2023. Effects of γ-Irradiation on mating behavior of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Dryophthoridae). Insects, 14, 661. [CrossRef] [PubMed] [Google Scholar]
  19. Culbert NJ, Maiga H, Somda NSB, Gilles JRL, Bouyer J, Mamai W. 2018. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasites & Vectors, 11, 603. [CrossRef] [PubMed] [Google Scholar]
  20. Cypser JR, Johnson TE. 2002. Multiple Stressors in Caenorhabditis elegans Induce Stress Hormesis and Extended Longevity. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57, B109–B114. [CrossRef] [PubMed] [Google Scholar]
  21. Dean GJ, Wortham SM. 1969. Effect of gamma-radiation on the tsetse fly Glossina morsitans Westw. Bulletin of Entomological Research, 58, 505–519. [CrossRef] [Google Scholar]
  22. Dieng MM, Dera KM, Moyaba P, Ouedraogo GMS, Demirbas-Uzel G, Gstöttenmayer F, Mulandane FC, Neves L, Mdluli S, Rayaisse J-B, Belem AMG, Pagabeleguem S, de Beer CJ, Parker AG, Van Den Abbeele J, Mach RL, Vreysen MJB, Abd-Alla AMM. 2022. Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication. Scientific Reports, 12, 3322. [CrossRef] [PubMed] [Google Scholar]
  23. Du W, Hu C, Yu C, Tong J, Qiu J, Zhang S, Liu Y. 2019. Comparison between pupal and adult X-ray radiation, designed for the sterile insect technique for Aedes albopictus control. Acta Tropica, 199, 105110. [CrossRef] [PubMed] [Google Scholar]
  24. Dyck VA, Hendrichs J, Robinson AS. 2021. Sterile Insect technique: Principles and practice in area-wide integrated pest management, 2nd edn. CRC Press: Boca Raton. [Google Scholar]
  25. Elkind MM, Sutton H. 1959. X-Ray damage and recovery in mammalian cells in culture. Nature, 184, 1293–1295. [CrossRef] [PubMed] [Google Scholar]
  26. FAO/IAEA. 2006. Standard operating procedures for mass-rearing tsetse flies. Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria. [Google Scholar]
  27. FAO/IAEA. 2022. Dosimetry for SIT: standard operating procedure for gafchromicTM film dosimetry system for gamma radiation v. 1.0, in Parker A, Mehta K, Gómez Simuta Y, Editors. Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria. [Google Scholar]
  28. FAO/IAEA. 2020. Guidelines for Irradiation of Mosquito Pupae in Sterile Insect Technique Programmes Version 1.0, in Yamada H, Parker A, Maiga H, Argiles R, Bouyer J, Editors. Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria. [Google Scholar]
  29. Feinendegen LE. 2005. Evidence for beneficial low level radiation effects and radiation hormesis. British Journal of Radiology, 78, 3–7. [CrossRef] [PubMed] [Google Scholar]
  30. Feldmann U, Luger D, Barnor H, Dengwat L, Ajagbonna B, Vreysen MJB, Van der Vloedt AMV. 1992. Tsetse fly mass rearing: colony management, deployment of sterile flies, related research and development, Tsetse Control Diagn. Chemother. Using Nucl. Tech. Proc. Semin. Jointly Organ. IAEA Fao Muguga Kenya 11–15 Feb 1991. IAEA: Vienna, Austria. p. 167–180. [Google Scholar]
  31. Helinski ME, Parker AG, Knols BG. 2009. Radiation biology of mosquitoes. Malaria Journal, 8, S6. [CrossRef] [PubMed] [Google Scholar]
  32. Hendrichs JP, Vreysen MJB, Enkerlin WR, Cayol JP. 2005. Strategic options in using sterile insects for area-wide integrated pest management, in Sterile Insect Tech. Princ. Pract. Area-Wide Integr. Pest Manag. Dyck VA, Hendrichs J, Robinson AS, Editors. Springer: Dordrecht, The Netherlands. p. 563–600. [Google Scholar]
  33. Hosseinzadeh A, Shayesteh N, Zolfagharieh H, Babaei M, Zareshahi H, Mostafavi H, Fatollahi H. 2010. Gamma radiation sensitivity of different stages of Saw-Toothed Grain Beetle Oryzaephilus Surinamensis L. (Coleoptera: Silvanidae). Journal of Plant Protection Research, 50, 250–255. [CrossRef] [Google Scholar]
  34. Kaboré BA, Nawaj A, Maiga H, Soukia O, Pagabeleguem S, Ouédraogo/Sanon MSG, Vreysen MJB, Mach RL, De Beer CJ. 2023. X-rays are as effective as gamma-rays for the sterilization of Glossina palpalis gambiensis Vanderplank, 1911 (Diptera: Glossinidae) for use in the sterile insect technique. Scientific Reports, 13, 17633. [CrossRef] [PubMed] [Google Scholar]
  35. Kizza D, Ocaido M, Mugisha A, Azuba R, Nalubwama S, Nalule S, Onyuth H, Musinguzi SP, Waiswa C. 2022. The economic cost of bovine trypanosomosis in pastoral and ago pastoral communities surrounding Murchision Falls National Park, Buliisa District, Uganda. BMC Veterinary Research, 18, 372. [CrossRef] [PubMed] [Google Scholar]
  36. Klassen W, Curtis CF, Hendrichs J. 2021. History of the sterile insect technique, in Sterile Insect Tech. Princ. Pract. Area-Wide Integr. Pest Manag., 2nd edn. Dyck VA, Hendrichs J, Robinson AS, Editors. CRC Press: Boca Raton. p. 1–44. [Google Scholar]
  37. LaChance LE, Graham CK. 1984. Insect radiosensitivity: dose curves and dose fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species. Mutation Research, 127, 49–59. [CrossRef] [PubMed] [Google Scholar]
  38. Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. 2022. Radiation dose rate effects: what is new and what is needed? Radiation and Environmental Biophysics, 61, 507–543. [CrossRef] [PubMed] [Google Scholar]
  39. Mbang N, Mavoungou J, Mawili-Mboumba D, Zinga K, Bouyou-Akotet M, M’batchi B. 2015. Inventory of potential vectors of Trypanosoma and infection rate of the tsetse fly in the National Park of Ivindo. Gabon. African Health Sciences, 15, 762. [CrossRef] [PubMed] [Google Scholar]
  40. Mirieri CK, Abd-Alla AMM, Ros VID, van Oers MM. 2023. Evaluating the effect of irradiation on the densities of two RNA Viruses in Glossina morsitans morsitans. Insects, 14, 397. [CrossRef] [PubMed] [Google Scholar]
  41. Mutika GN, Kabore I, Seck MT, Sall B, Bouyer J, Parker AG, Vreysen MJB. 2013. Mating performance of Glossina palpalis gambiensis strains from Burkina Faso, Mali, and Senegal. Entomologia Experimentalis et Applicata, 146, 177–185. [CrossRef] [Google Scholar]
  42. Mutika GN, Parker AG. 2014. Tolerance of low temperature and sterilizing irradiation in males of Glossina pallidipes (Diptera: Glossinidae). Journal of Insect Science, 14, 262. [CrossRef] [Google Scholar]
  43. Offori ED. 1981. The scourge of the tsetse. IAEA Bulletin, 23, 4. [Google Scholar]
  44. Pagabeleguem S, Koughuindida O, Salou EW, Gimonneau G, Toé AI, Kaboré BA, Dera KM, Maïga H, Belem AMG, Sanou/Ouédraogo GMS, Vreysen MJ, Bouyer J. 2023. Gamma-radiation of Glossina palpalis gambiensis revisited: effect on fertility and mating competitiveness. Parasite, 30, 8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Park JS, Lee JY, Jeong SY, Ahn S-J, Kim I. 2015. Effects of gamma radiation on different developmental stages of the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae): Gamma irradiation on Helicoverpa assulta. Entomological Research, 45, 110–115. [CrossRef] [Google Scholar]
  46. Parker A, Mehta K. 2007. Sterile insect technique: a model for dose optimization for improved sterile insect quality. Florida Entomologist, 90, 88–95. [CrossRef] [Google Scholar]
  47. Politzar H, Cuisance D. 1984. An integrated campaign against riverine tsetse, Glossina palpalis gambiensis and Glossina tachinoides by trapping, and the release of sterile males. International Journal of Tropical Insect Science, 5, 439–442. [CrossRef] [Google Scholar]
  48. Qu L, Wang L, Wang Q, Wang Y, Zhang Y. 2014. Metabolic profiling of somatic tissues from Monochamus alternatus (Coleoptera: Cerambycidae) reveals effects of irradiation on metabolism. International Journal of Molecular Sciences, 15, 10806–10820. [CrossRef] [PubMed] [Google Scholar]
  49. Robinson A. 2002. Mutations and their use in insect control. Mutation Research/Reviews in Mutation Research, 511, 113–132. [CrossRef] [Google Scholar]
  50. Seck MT, Pagabeleguem S, Bassene MD, Fall AG, Diouf TAR, Sall B, Vreysen MJB, Rayaissé JB, Takac P, Sidibé I, Parker AG, Mutika GN, Bouyer J, Gimonneau G. 2015. Quality of sterile male tsetse after long distance transport as chilled, irradiated pupae. PLoS Neglected Tropical Diseases, 9, e0004229. [CrossRef] [PubMed] [Google Scholar]
  51. Takken V, Oladunmade MA, Dengwat L, Feldmann HU, Onah JA, Tenabe SO, Hamann HJ. 1986. The eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in central Nigeria. Bulletin of Entomological Research, 76, 275–286. [CrossRef] [Google Scholar]
  52. Tamhankar AJ, Shantharam K. 2001. Sterile insect technique (SIT) for control of spotted bollworm of cotton: field experiments confirm dose fractionation improves mating competitiveness of sterile males. National Association for Applications of Radioisotopes and Radiation in Industry: India. [Google Scholar]
  53. Tan KH. 1998. Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia: Penang, Malaysia. [Google Scholar]
  54. Taze Y, Cuisance D, Politzar H, Clair M, Sellin E. 1977. Essais de détermination de la dose optimale d’irradiation des mâles de Glossina palpalis gambiensis (Vanderplank, 1949) en vue de la lutte biologique par lâchers de males stériles dans la région de Bobo Dioulasso (Haute Volta). Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 30, 269–279. [Google Scholar]
  55. Tussey DA, Linthicum KJ, Hahn DA. 2022. Does severe hypoxia during irradiation of Aedes aegypti pupae improve sterile male performance? Parasites & Vectors, 15, 446. [CrossRef] [PubMed] [Google Scholar]
  56. Vimal N, Angmo N, Sengupta M, Seth RK. 2022. Radiation hormesis to improve the quality of adult Spodoptera litura (Fabr.). Insects, 13, 933. [CrossRef] [PubMed] [Google Scholar]
  57. Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann HU. 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. Journal of Economic Entomology, 93, 123–135. [CrossRef] [PubMed] [Google Scholar]
  58. Vreysen MJB, Seck MT, Sall B, Mbaye AG, Bassene M, Fall AG, Lo M, Bouyer J. 2021. Area-wide integrated management of a Glossina palpalis gambiensis population from the Niayes area of Senegal: A review of operational research in support of a phased conditional approach, in Area-Wide Integration, 1st edn. CRC Press: Boca Raton. p. 275–303. [Google Scholar]
  59. Vreysen MJB, Van der Vloedt AMV. 1995. Radiation sterilization of Glossina tachinoides Westw. pupae. I. The effect of dose fractionation and nitrogen during irradiation in the mid-pupal phase. Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 48, 45–51. [Google Scholar]
  60. Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, De Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. 2021. The insect pest control laboratory of the joint FAO/IAEA Programme: Ten years (2010–2020) of research and development, achievements and challenges in support of the sterile insect technique. Insects, 12, 346. [CrossRef] [PubMed] [Google Scholar]
  61. Vreysen MJB, Saleh KM, Lancelot R, Bouyer J. 2011. Factory tsetse flies must behave like wild flies: A prerequisite for the sterile insect technique. PLoS Neglected Tropical Diseases, 5, e907. [CrossRef] [PubMed] [Google Scholar]
  62. Vreysen MJB, Van Der Vloedt AMV. 1995. Stérilisation par irradiation de Glossina tachinoides Westw. pupae. I. Effet des doses fractionnées et de l’azote pendant l’irradiation à mi-course de la phase pupale. Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 48, 45–51. [Google Scholar]
  63. Wamwiri FN, Changasi RE. 2016. Tsetse flies (Glossina) as vectors of human African trypanosomiasis: A review. BioMed Research International, 2016, 1–8. [CrossRef] [Google Scholar]
  64. Wyss JH. 2000. Screwworm eradication in the Americas. Annals of the New York Academy of Sciences, 916, 186–193. [Google Scholar]
  65. Yamada H, Kaboré BA, Bimbilé Somda NS, Ntoyi NL, de Beer CJ, Bouyer J, Caceres C, Mach RL, Gómez-Simuta Y. 2023. Suitability of Raycell MK2 blood X-ray irradiator for the use in the sterile insect technique: Dose response in fruit flies, tsetse flies and mosquitoes. Insects, 14, 92. [CrossRef] [PubMed] [Google Scholar]
  66. Yamada H, Maiga H, Juarez J, De Oliveira Carvalho D, Mamai W, Ali A, Bimbile-Somda NS, Parker AG, Zhang D, Bouyer J. 2019. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasites & Vectors, 12, 435. [CrossRef] [PubMed] [Google Scholar]
  67. Yamada H, Maïga H, Kraupa C, Somda NSB, Mamai W, Wallner T, Bouyer J. 2023. Radiation dose-fractionation in adult Aedes aegypti mosquitoes. Parasite, 30, 5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  68. Yamada H, Vreysen MJ, Gilles JR, Munhenga G, Damiens DD. 2014. The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malaria Journal, 13, 318. [CrossRef] [PubMed] [Google Scholar]
  69. Zhang J-H, Li N, Zhao H-Y, Wang Y-Q, Yang X-Q, Wu K-M. 2023. Sterility of Cydia pomonella by X-ray irradiation as an alternative to gamma radiation for the sterile insect technique. Bulletin of Entomological Research, 113, 72–78. [CrossRef] [PubMed] [Google Scholar]
  70. Zhao J, Li S, Xu L, Li C, Li Q, Dewer Y, Wu K. 2022. Effects of X-Ray irradiation on biological parameters and induced sterility of Ephestia elutella: Establishing the optimum irradiation dose and stage. Frontiers in Physiology, 13, 895882. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.