Open Access
Volume 31, 2024
Article Number 6
Number of page(s) 16
Published online 08 February 2024
  1. Adriazola IO, Evangelista Do Amaral A, Amorim JC, Correia BL, Petkowicz CL, Mercê AL, Noleto GR. 2014. Macrophage activation and leishmanicidal activity by galactomannan and its oxovanadium (IV/V) complex in vitro. Journal of Inorganic Biochemistry, 132, 45–51. [CrossRef] [PubMed] [Google Scholar]
  2. Ahmed SF, Oswald IP, Caspar P, Hieny S, Keefer L, Sher A, James SL. 1997. Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infection and Immunity, 65, 219–226. [CrossRef] [PubMed] [Google Scholar]
  3. Amo-Aparicio J, Garcia-Garcia J, Francos-Quijorna I, Urpi A, Esteve-Codina A, Gut M, Quintana A, Lopez-Vales R. 2021. Interleukin-4 and interleukin-13 induce different metabolic profiles in microglia and macrophages that relate with divergent outcomes after spinal cord injury. Theranostics, 11, 9805–9820. [CrossRef] [PubMed] [Google Scholar]
  4. Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. 2022. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Neglected Tropical Diseases, 16, e0010929. [CrossRef] [PubMed] [Google Scholar]
  5. Bai Y, Ma KN, Sun XY, Dan Liu R, Long SR, Jiang P, Wang ZQ, Cui J. 2021. Molecular characterization of a novel cathepsin L from Trichinella spiralis and its participation in invasion, development and reproduction. Acta Tropica, 224, 106112. [CrossRef] [PubMed] [Google Scholar]
  6. Bailey P, Chang DK, Forget MA, Lucas FA, Alvarez HA, Haymaker C, Chattopadhyay C, Kim SH, Ekmekcioglu S, Grimm EA, Biankin AV, Hwu P, Maitra A, Roszik J. 2016. Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 6, 35848. [CrossRef] [PubMed] [Google Scholar]
  7. Bardi GT, Smith MA, Hood JL. 2018. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine, 105, 63–72. [CrossRef] [PubMed] [Google Scholar]
  8. Chang ZQ, Lee JS, Gebru E, Hong JH, Jung HK, Jo WS, Park SC. 2010. Mechanism of macrophage activation induced by beta-glucan produced from Paenibacillus polymyxa JB115. Biochemical and Biophysical Research Communications, 391, 1358–1362. [CrossRef] [PubMed] [Google Scholar]
  9. Chen F, Huang G. 2018. Preparation and immunological activity of polysaccharides and their derivatives. International Journal of Biological Macromolecules, 112, 211–216. [CrossRef] [PubMed] [Google Scholar]
  10. Cheng Y, Yu Y, Zhuang Q, Wang L, Zhan B, Du S, Liu Y, Huang J, Hao J, Zhu X. 2022. Bone erosion in inflammatory arthritis is attenuated by Trichinella spiralis through inhibiting M1 monocyte/macrophage polarization, iScience, 25, 103979. [Google Scholar]
  11. Cui Z, Gong Y, Luo X, Zheng N, Tan S, Liu S, Li Y, Wang Q, Sun F, Hu M, Pan W, Yang X. 2023. β-Glucan alleviates goal-directed behavioral deficits in mice infected with Toxoplasma gondii. Parasites & Vectors, 16, 65. [CrossRef] [PubMed] [Google Scholar]
  12. Despommier DD. 1998. How does Trichinella spiralis make itself at home? Parasitology Today, 14, 318–323. [CrossRef] [Google Scholar]
  13. European Food Safety Authority; European Centre for Disease Prevention and Control. 2021. The European Union One Health 2019 zoonoses report. EFSA Journal, 19, e06406. [Google Scholar]
  14. Galván-Moroyoqui JM. 2011. Pathogenic bacteria prime the induction of Toll-like receptor signalling in human colonic cells by the Gal/GalNAc lectin carbohydrate recognition domain of Entamoeba histolytica. International Journal for Parasitology, 41, 1101–1112. [CrossRef] [PubMed] [Google Scholar]
  15. Gansmuller A, Anteunis A, Venturiello SM, Bruschi F, Binaghi RA. 1987. Antibody-dependent in-vitro cytotoxicity of newborn Trichinella spiralis larvae: nature of the cells involved. Parasite Immunology, 9, 281–292. [CrossRef] [PubMed] [Google Scholar]
  16. Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, Appleton JA. 2012. Eosinophils preserve parasitic nematode larvae by regulating local immunity. Journal of Immunology, 188, 417–425. [CrossRef] [PubMed] [Google Scholar]
  17. Guo KX, Bai Y, Ren HN, Sun XY, Song YY, Liu RD, Long SR, Zhang X, Jiang P, Wang ZQ, Cui J. 2020. Characterization of a Trichinella spiralis aminopeptidase and its participation in invasion, development and fecundity. Veterinary Research, 51, 78. [CrossRef] [PubMed] [Google Scholar]
  18. Han C, Yu J, Zhang Z, Zhai P, Zhang Y, Meng S, Yu Y, Li X, Song M. 2019. Immunomodulatory effects of Trichinella spiralis excretory-secretory antigens on macrophages. Experimental Parasitology, 196, 68–72. [CrossRef] [PubMed] [Google Scholar]
  19. Han Y, Yue X, Hu CX, Liu F, Liu RD, He MM, Long SR, Cui J, Wang ZQ. 2020. Interaction of a Trichinella spiralis cathepsin B with enterocytes promotes the larval intrusion into the cells. Research in Veterinary Science, 130, 110–117. [CrossRef] [PubMed] [Google Scholar]
  20. Hao HN, Lu QQ, Wang Z, Li YL, Long SR, Dan Liu R, Cui J, Wang ZQ. 2023. Mannose facilitates Trichinella spiralis expulsion from the gut and alleviates inflammation of intestines and muscles in mice. Acta Tropica, 241, 106897. [CrossRef] [PubMed] [Google Scholar]
  21. Hao HN, Song YY, Ma KN, Wang BN, Long SR, Liu RD, Zhang X, Wang ZQ, Cui J. 2022. A novel C-type lectin from Trichinella spiralis mediates larval invasion of host intestinal epithelial cells. Veterinary Research, 53, 85. [CrossRef] [PubMed] [Google Scholar]
  22. Hu CX, Xu YXY, Hao HN, Liu RD, Jiang P, Long SR, Wang ZQ, Cui J. 2021. Oral vaccination with recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase elicited a protective immunity in BALB/c mice. PLoS Neglected Tropical Diseases, 15, e0009865. [CrossRef] [PubMed] [Google Scholar]
  23. Hu CX, Zeng J, Hao HN, Xu YXY, Liu F, Liu RD, Long SR, Wang ZQ, Cui J. 2021. Biological properties and roles of a Trichinella spiralis inorganic pyrophosphatase in molting and developmental process of intestinal larval stages. Veterinary Research, 52, 6. [CrossRef] [PubMed] [Google Scholar]
  24. Hu CX, Zeng J, Yang DQ, Yue X, Dan Liu R, Long SR, Zhang X, Jiang P, Cui J, Wang ZQ. 2020. Binding of elastase-1 and enterocytes facilitates Trichinella spiralis larval intrusion of the host’s intestinal epithelium. Acta Tropica, 211, 105592. [CrossRef] [PubMed] [Google Scholar]
  25. Hu YY, Zhang R, Yan SW, Yue WW, Zhang JH, Liu RD, Long SR, Cui J, Wang ZQ. 2021. Characterization of a novel cysteine protease in Trichinella spiralis and its role in larval intrusion, development and fecundity. Veterinary Research, 52, 113. [CrossRef] [PubMed] [Google Scholar]
  26. Jhan MK, Chen CL, Shen TJ, Tseng PC, Wang YT, Satria RD, Yu CY, Lin CF. 2021. Polarization of type 1 macrophages is associated with the severity of viral encephalitis caused by Japanese encephalitis virus and dengue Virus. Cells, 10, 3181. [CrossRef] [PubMed] [Google Scholar]
  27. Jin QW, Zhang NZ, Li WH, Qin HT, Liu YJ, Ohiolei JA, Niu DY, Yan HB, Li L, Jia WZ, Song MX, Fu BQ. 2020. Trichinella spiralis thioredoxin peroxidase 2 regulates protective Th2 immune response in mice by directly inducing alternatively activated macrophages. Frontiers in Immunology, 11, 2015. [CrossRef] [PubMed] [Google Scholar]
  28. Kashfi K, Kannikal J, Nath N. 2021. Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells, 10, 3194. [CrossRef] [PubMed] [Google Scholar]
  29. Kim HS, Kim YJ, Lee HK, Ryu HS, Kim JS, Yoon MJ, Kang JS, Hong JT, Kim Y, Han SB. 2012. Activation of macrophages by polysaccharide isolated from Paecilomyces cicadae through toll-like receptor 4. Food and Chemical Toxicology, 50, 3190–3197. [CrossRef] [PubMed] [Google Scholar]
  30. Lei JJ, Hu YY, Liu F, Yan SW, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. 2020. Molecular cloning and characterization of a novel peptidase from Trichinella spiralis and protective immunity elicited by the peptidase in BALB/c mice. Veterinary Research, 51, 111. [CrossRef] [PubMed] [Google Scholar]
  31. Leung MY, Liu C, Koon JC, Fung KP. 2006. Polysaccharide biological response modifiers. Immunology Letters, 105, 101–114. [CrossRef] [PubMed] [Google Scholar]
  32. Li LG, Peng XC, Yu TT, Xu HZ, Han N, Yang XX, Li QR, Hu J, Liu B, Yang ZY, Xu X, Chen X, Wang MF, Li TF. 2022. Dihydroartemisinin remodels macrophage into an M1 phenotype via ferroptosis-mediated DNA damage. Frontiers in Pharmacology, 13, 949835. [CrossRef] [PubMed] [Google Scholar]
  33. Li R, Li D, Wang H, Chen K, Wang S, Xu J, Ji P. 2022. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Research & Therapy, 13, 149. [CrossRef] [PubMed] [Google Scholar]
  34. Lima-Junior DS, Costa DL, Carregaro V, Cunha LD, Silva AL, Mineo TW, Gutierrez FR, Bellio M, Bortoluci KR, Flavell RA, Bozza MT, Silva JS, Zamboni DS. 2013. Inflammasome-derived IL-1β production induces nitric oxide-mediated resistance to Leishmania. Nature Medicine, 19, 909–915. [CrossRef] [PubMed] [Google Scholar]
  35. Liu RD, Cui J, Liu XL, Jiang P, Sun GG, Zhang X, Long SR, Wang L, Wang ZQ. 2015. Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae. Acta Tropica, 150, 79–86. [CrossRef] [PubMed] [Google Scholar]
  36. Liu RD, Wang ZQ, Wang L, Long SR, Ren HJ, Cui J. 2013. Analysis of differentially expressed genes of Trichinella spiralis larvae activated by bile and cultured with intestinal epithelial cells using real-time PCR. Parasitology Research, 112, 4113–4120. [CrossRef] [PubMed] [Google Scholar]
  37. Manwarren T, Gagliardo L, Geyer J, Mcvay C, Pearce-Kelling S, Appleton J. 1997. Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis. Infection and Immunity, 65, 4806–4812. [CrossRef] [PubMed] [Google Scholar]
  38. Martinez FO, Gordon S. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports, 6, 13. [CrossRef] [PubMed] [Google Scholar]
  39. Perera N, Yang FL, Lu YT, Li LH, Hua KF, Wu SH. 2018. Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through Toll-like Receptor 4. International Journal of Biological Sciences, 14, 1378–1388. [CrossRef] [PubMed] [Google Scholar]
  40. Ren HN, Bai SJ, Wang Z, Han LL, Yan SW, Jiang P, Zhang X, Wang ZQ, Cui J. 2021. A metalloproteinase Tsdpy31 from Trichinella spiralis participates in larval molting and development. International Journal of Biological Macromolecules, 192, 883–894. [CrossRef] [PubMed] [Google Scholar]
  41. Ren HN, Guo KX, Zhang Y, Sun GG, Liu RD, Jiang P, Zhang X, Wang L, Cui J, Wang ZQ. 2018. Molecular characterization of a 31 kDa protein from Trichinella spiralis and its induced immune protection in BALB/c mice. Parasites & Vectors, 11, 625. [CrossRef] [PubMed] [Google Scholar]
  42. Ren HN, Liu RD, Song YY, Zhuo TX, Guo KX, Zhang Y, Jiang P, Wang ZQ, Cui J. 2019. Label-free quantitative proteomic analysis of molting-related proteins of Trichinella spiralis intestinal infective larvae. Veterinary Research, 50, 70. [CrossRef] [PubMed] [Google Scholar]
  43. Ribicich MM, Fariña FA, Aronowicz T, Ercole ME, Bessi C, Winter M, Pasqualetti MI. 2021. Reprint of: A review on Trichinella infection in South America. Veterinary Parasitology, 297, 109540. [CrossRef] [PubMed] [Google Scholar]
  44. Rolot M, Dewals BG. 2018. Macrophage activation and functions during helminth infection: Recent advances from the laboratory mouse. Journal of Immunology Research, 2018, 2790627. [CrossRef] [Google Scholar]
  45. Romarís F, Appleton JA. 2001. Invasion of epithelial cells by Trichinella spiralis: in vitro observations. Parasite, 8, S48–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Sehrawat S, Reddy PB, Rajasagi N, Suryawanshi A, Hirashima M, Rouse BT. 2010. Galectin-9/TIM-3 interaction regulates virus-specific primary and memory CD8 T cell response. PLoS Pathogens, 6, e1000882. [CrossRef] [PubMed] [Google Scholar]
  47. Song YY, Zhang Y, Ren HN, Sun GG, Qi X, Yang F, Jiang P, Zhang X, Cui J, Wang ZQ. 2018. Characterization of a serine protease inhibitor from Trichinella spiralis and its participation in larval invasion of host’s intestinal epithelial cells. Parasites & Vectors, 11, 499. [CrossRef] [PubMed] [Google Scholar]
  48. Srivastava M, Kapoor VP. 2005. Seed galactomannans: an overview. Chemistry & Biodiversity, 2, 295–317. [CrossRef] [PubMed] [Google Scholar]
  49. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, Heimbürger O, Cederholm T, Girndt M. 2005. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney International, 67, 1216–1233. [CrossRef] [PubMed] [Google Scholar]
  50. Sun GG, Song YY, Jiang P, Ren HN, Yan SW, Han Y, Liu RD, Zhang X, Wang ZQ, Cui J. 2018. Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool. PLoS Neglected Tropical Diseases, 12, e0006485. [CrossRef] [PubMed] [Google Scholar]
  51. Sun Q, Huang J, Gu Y, Liu S, Zhu X. 2022. Dynamic changes of macrophage activation in mice infected with Trichinella spiralis. International Immunopharmacology, 108, 108716. [CrossRef] [PubMed] [Google Scholar]
  52. Sun R, Zhao X, Wang Z, Yang J, Zhao L, Zhan B, Zhu X. 2015. Trichinella spiralis paramyosin binds human complement C1q and inhibits classical complement activation. PLoS Neglected Tropical Diseases, 9, e0004310. [CrossRef] [PubMed] [Google Scholar]
  53. Sun X, Lv Z, Peng H, Fung M, Yang L, Yang J, Zheng H, Liang J, Wu Z. 2012. Effects of a recombinant schistosomal-derived anti-inflammatory molecular (rSj16) on the lipopolysaccharide (LPS)-induced activated RAW264.7. Parasitology Research, 110, 2429–2437. [CrossRef] [PubMed] [Google Scholar]
  54. Tang S, Jiang M, Huang C, Lai C, Fan Y, Yong Q. 2018. Characterization of arabinogalactans from Larix principis-rupprechtii and their effects on NO production by macrophages. Carbohydrate Polymers, 200, 408–415. [CrossRef] [PubMed] [Google Scholar]
  55. Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. 2022. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. International Journal of Biological Macromolecules, 205, 530–538. [CrossRef] [PubMed] [Google Scholar]
  56. Tao Y, Wang T, Huang C, Lai C, Ling Z, Yong Q. 2021. Effects of seleno-Sesbania canabina galactomannan on anti-oxidative and immune function of macrophage. Carbohydrate Polymers, 261, 117833. [CrossRef] [PubMed] [Google Scholar]
  57. Vasilev S, Mitic I, Mirilovic M, Plavsa D, Milakara E, Plavsic B, Sofronic-Milosavljevic L. 2023. Trichinella infection in Serbia from 2011 to 2020: a success story in the field of One Health. Epidemiology and Infection, 151, e20. [CrossRef] [PubMed] [Google Scholar]
  58. Wang R, Zhang Y, Zhen J, Zhang J, Pang Z, Song X, Lin L, Sun F, Lu Y. 2022. Effects of exosomes derived from Trichinella spiralis infective larvae on intestinal epithelial barrier function. Veterinary Research, 53, 87. [CrossRef] [PubMed] [Google Scholar]
  59. Wang Z, Hao C, Zhuang Q, Zhan B, Sun X, Huang J, Cheng Y, Zhu X. 2020. Excretory/Secretory products from Trichinella spiralis adult worms attenuated DSS-induced colitis in mice by driving PD-1-mediated M2 macrophage polarization. Frontiers in Immunology, 11, 563784. [CrossRef] [PubMed] [Google Scholar]
  60. Woods S, Schroeder J, Mcgachy HA, Plevin R, Roberts CW, Alexander J. 2013. MAP kinase phosphatase-2 plays a key role in the control of infection with Toxoplasma gondii by modulating iNOS and arginase-1 activities in mice. PLoS Pathogens, 9, e1003535. [CrossRef] [PubMed] [Google Scholar]
  61. Wu Z, Nagano I, Takahashi Y, Maekawa Y. 2016. Practical methods for collecting Trichinella parasites and their excretory-secretory products. Parasitology International, 65, 591–595. [CrossRef] [PubMed] [Google Scholar]
  62. Xu J, Yang F, Yang DQ, Jiang P, Liu RD, Zhang X, Cui J, Wang ZQ. 2018. Molecular characterization of Trichinella spiralis galectin and its participation in larval invasion of host’s intestinal epithelial cells. Veterinary Research, 49, 79. [CrossRef] [PubMed] [Google Scholar]
  63. Xu N, Bai X, Liu Y, Yang Y, Tang B, Shi HN, Vallee I, Boireau P, Liu X, Liu M. 2021. The anti-inflammatory immune response in early Trichinella spiralis intestinal infection depends on serine protease inhibitor-mediated alternative activation of macrophages. Journal of Immunology, 206, 963–977. [CrossRef] [PubMed] [Google Scholar]
  64. Xu YXY, Zhang XZ, Weng MM, Cheng YK, Liu RD, Long SR, Wang ZQ, Cui J. 2022. Oral immunization of mice with recombinant Lactobacillus plantarum expressing a Trichinella spiralis galectin induces an immune protection against larval challenge. Parasites & Vectors, 15, 475. [CrossRef] [PubMed] [Google Scholar]
  65. Yan SW, Hu YY, Song YY, Ren HN, Shen JM, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. 2021. Characterization of a Trichinella spiralis cathepsin X and its promotion for the larval invasion of mouse intestinal epithelial cells. Veterinary Parasitology, 297, 109160. [CrossRef] [PubMed] [Google Scholar]
  66. Yang F, Li X, Yang Y, Ayivi-Tosuh SM, Wang F, Li H, Wang G. 2019. A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways. International Journal of Biological Macromolecules, 140, 895–906. [CrossRef] [PubMed] [Google Scholar]
  67. Yoon YD, Han SB, Kang JS, Lee CW, Park SK, Lee HS, Kang JS, Kim HM. 2003. Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platycodon grandiflorum. International Immunopharmacology, 3, 1873–1882. [CrossRef] [PubMed] [Google Scholar]
  68. Yu Q, Cheng P, Wu J, Guo C. 2021. PPARγ/NF-κB and TGF-β1/Smad pathway are involved in the anti-fibrotic effects of levo-tetrahydropalmatine on liver fibrosis. Journal of Cellular and Molecular Medicine, 25, 1645–1660. [CrossRef] [PubMed] [Google Scholar]
  69. Yue WW, Yan SW, Zhang R, Cheng YK, Liu RD, Long SR, Zhang X, Wang ZQ, Cui J. 2022. Characterization of a novel pyruvate kinase from Trichinella spiralis and its participation in sugar metabolism, larval molting and development. PLoS Neglected Tropical Diseases, 16, e0010881. [CrossRef] [PubMed] [Google Scholar]
  70. Yue X, Sun XY, Liu F, Hu CX, Bai Y, Yang Q, Liu RD, Zhang X, Cui J, Wang ZQ. 2020. Molecular characterization of a Trichinella spiralis serine proteinase. Veterinary Research, 51, 125. [CrossRef] [PubMed] [Google Scholar]
  71. Zawistowska-Deniziak A, Bień-Kalinowska J, Basałaj K. 2021. Regulation of human THP-1 macrophage polarization by Trichinella spiralis. Parasitology Research, 120, 569–578. [CrossRef] [PubMed] [Google Scholar]
  72. Zeng J, Zhang XZ, Zhang R, Yan SW, Song YY, Long SR, Dan Liu R, Wang ZQ, Cui J. 2021. Vaccination of mice with recombinant novel aminopeptidase P and cathepsin X alone or in combination induces protective immunity against Trichinella spiralis infection. Acta Tropica, 224, 106125. [CrossRef] [PubMed] [Google Scholar]
  73. Zhang BC, Li Z, Xu W, Xiang CH, Ma YF. 2018. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells. American Journal of. Translational Research, 10(1), 265–273. [Google Scholar]
  74. Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD. 2023. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Research in Veterinary Science, 165, 105075. [CrossRef] [PubMed] [Google Scholar]
  75. Zhang S, Zhang Q, Li C, Xing N, Zhou P, Jiao Y. 2023. A zinc-modified Anemarrhena asphodeloides polysaccharide complex enhances immune activity via the NF-κB and MAPK signaling pathways. International Journal of Biological Macromolecules, 249, 126017. [CrossRef] [PubMed] [Google Scholar]
  76. Zhang XZ, Wang ZQ, Cui J. 2022. Epidemiology of trichinellosis in the People’s Republic of China during 2009–2020. Acta Tropica, 229, 106388. [CrossRef] [PubMed] [Google Scholar]
  77. Zhang XZ, Yue WW, Bai SJ, Hao HN, Song YY, Long SR, Dan Liu R, Cui J, Wang ZQ. 2022. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection. Acta Tropica, 226, 106263. [CrossRef] [PubMed] [Google Scholar]
  78. Zheng L, Pan Y, Feng Y, Cui L, Cao Y. 2015. L-Arginine supplementation in mice enhances NO production in spleen cells and inhibits Plasmodium yoelii transmission in mosquitoes. Parasites & Vectors, 8, 326. [CrossRef] [PubMed] [Google Scholar]
  79. Zong A, Cao H, Wang F. 2012. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydrate Polymers, 90, 1395–1410. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.