Open Access
Volume 31, 2024
Article Number 3
Number of page(s) 7
Published online 04 February 2024
  1. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373, 871–876. [CrossRef] [PubMed] [Google Scholar]
  2. Baffi MA, de Souza GRL, de Sousa CS, Ceron CR, Bonetti AM. 2008. Esterase enzymes involved in pyrethroid and organophosphate resistance in a Brazilian population of Riphicephallus (Boophilus) microplus [sic] (Acari, Ixodidae). Molecular and Biochemical Parasitology, 160, 70–73. [CrossRef] [PubMed] [Google Scholar]
  3. Baxter GD, Barker SC. 2002. Analysis of the sequence and expression of a second putative acetylcholinesterase cDNA from organophosphate-susceptible and organophosphate-resistant cattle ticks. Insect Biochemistry and Molecular Biology, 32, 815–820. [CrossRef] [PubMed] [Google Scholar]
  4. Boublik Y, Saint-Aguet P, Lougarre A, Arnaud M, Villatte F, Estrada-Mondaca S, Fournier D. 2002. Acetylcholinesterase engineering for detection of insecticide residues. Protein Engineering, 15, 43–50. [CrossRef] [Google Scholar]
  5. Brito LG, de Oliveira Nery L, da Silva Barbieri F, Huacca MEF, Dos Santos Pereira S, da Silva RR, de Freitas Fernanades CC, de Sena Oliveira MC. 2017. Molecular quantitative assay for esterase-mediated organophosphate resistance in Rhipicephalus microplus. Ticks and Tick-Borne Diseases, 8, 725–732. [CrossRef] [PubMed] [Google Scholar]
  6. Bull DL, Ahrens EH. 1988. Metabolism of coumaphos in susceptible and resistant strains of Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology, 25, 94–98. [CrossRef] [PubMed] [Google Scholar]
  7. Cossío-Bayúgar R, Martínez-Ibañez F, Aguilar-Díaz H, Miranda-Miranda E. 2018. Pyrethroid acaricide resistance is proportional to P-450 cytochrome oxidase expression in the cattle tick Rhipicephalus microplus. BioMed Research International, 2018, 8292465. [PubMed] [Google Scholar]
  8. Cossio-Bayugar R, Miranda-Miranda E, Aguilar Díaz H, Reynaud E. 2021. Type of resistance, in The entomological guide to Rhipicephalus, Kumar S, Cossio-Bayugar R, Sharma AK, Miranda EM, Chaubey AK, Editors. Nova Scientific Publishers: New York, NY. p. 147–176. [Google Scholar]
  9. Cossio-Bayugar R, Miranda-Miranda E, Ortiz-Najera A, Neri-Orantes S. 2008. Boophilus microplus pyrethroid resistance associated to increased levels of monooxygenase enzymatic activity in field isolated Mexican ticks. Journal of Biological Sciences, 8, 404–409. [CrossRef] [Google Scholar]
  10. Cossio-Bayugar R, Miranda-Miranda E, Ortiz-Najera A, Neri-Orantes S, Olvera-Valencia F. 2008. Cytochrome P-450 monooxygenase gene expression supports a multifactorial origin for acaricide resistance in Ripicephalus microplus. Research Journal of Parasitology, 3, 59–66. [CrossRef] [Google Scholar]
  11. Cossio-Bayugar R, Miranda-Miranda E, Portilla-Salgado D, Osorio-Miranda J. 2009. Quantitative PCR detection of cholinesterase and carboxylesterase expression levels in acaricide resistant Rhipicephalus (Boophilus) microplus. Journal of Entomology, 6, 117–123. [CrossRef] [Google Scholar]
  12. Dzul FA, Patricia Penilla R, Rodríguez AD. 2007. Susceptibility and insecticide resistance mechanisms in Anopheles albimanus from the southern Yucatan Peninsula, Mexico. Salud Publica de Mexico, 49, 302–311. [CrossRef] [PubMed] [Google Scholar]
  13. George JE, Pound JM, Davey RB. 2004. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology, 129(Suppl), S353–366. [CrossRef] [PubMed] [Google Scholar]
  14. Hemingway J, Karunaratne SH. 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology, 12, 1–12. [CrossRef] [PubMed] [Google Scholar]
  15. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653–665. [CrossRef] [PubMed] [Google Scholar]
  16. Hernandez R, He H, Chen AC, Ivie GW, George JE, Wagner GG. 1999. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology, 36, 764–770. [CrossRef] [PubMed] [Google Scholar]
  17. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589. [CrossRef] [PubMed] [Google Scholar]
  18. Karunaratne SHPP, Silva WAPPD, Weeraratne TC, Surendran SN. 2018. Insecticide resistance in mosquitoes: development, mechanisms and monitoring. Ceylon Journal of Science, 47, 299–309. [CrossRef] [Google Scholar]
  19. Karunaratne SHPP. 1998. Insecticide resistance in insects. Ceylon Journal of Science (Biological Sciences), 25, 72–99. [Google Scholar]
  20. Kim C-S, Kim W-T, Boo K-S, Kim S-I. 2003. Cloning, mutagenesis, and expression of the acetylcholinesterase gene from a strain of Musca domestica; the change from a drug-resistant to a sensitive enzyme. Molecules and Cells, 15, 208–215. [CrossRef] [PubMed] [Google Scholar]
  21. Lazarević-Pašti T, Čolović M, Savić J, Momić T, Vasić V. 2011. Oxidation of diazinon and malathion by myeloperoxidase. Pesticide Biochemistry and Physiology, 100, 140–144. [CrossRef] [Google Scholar]
  22. Liu Y, Grimm M, Dai W-T, Hou M-C, Xiao Z-X, Cao Y. 2020. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacologica Sinica, 41, 138–144. [CrossRef] [PubMed] [Google Scholar]
  23. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. 2022. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50, W276–W279. [CrossRef] [PubMed] [Google Scholar]
  24. Manchenko GP. 2003. Handbook of detection of enzymes on electrophoretic gels, 2nd edn. Boca Raton: CRC Press LLC. [Google Scholar]
  25. Martinez Ibañez F, Cossio-Bayugar R, Miranda-Miranda E, Jasso-Villazul CE. 2021. Reference tick strains as an important biological material for resistance characterization, The entomological guide to Rhipicephalus, Kumar S, Cossio-Bayugar R, Sharma AK, Miranda EM, Chaubey AK, Editors. Nova Scientific Publishers: New York, NY. p. 177–200. [Google Scholar]
  26. Parkinson A. 1996. Biotranformation of Xenobiotics, Casarett and Doull’s toxicology: The basic science of poisons, 5th edn., Casarett LJ, Klaassen CD, Amdur MO, Doull J, Editors. McGraw-Hill Medical: New York, NY. p. 113–196. [Google Scholar]
  27. Paton MG, Karunaratne SH, Giakoumaki E, Roberts N, Hemingway J. 2000. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochemical Journal, 346(Pt 1), 17–24. [CrossRef] [PubMed] [Google Scholar]
  28. Penilla RP, Rodríguez AD, Hemingway J, Trejo A, López AD, Rodríguez MH. 2007. Cytochrome P450-based resistance mechanism and pyrethroid resistance in the field Anopheles albimanus resistance management trial. Pesticide Biochemistry and Physiology, 89, 111–117. [CrossRef] [Google Scholar]
  29. Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bazgier V, Velankar S, Burley SK, Koča J, Rose AS. 2021. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Research, 49, W431–W437. [CrossRef] [PubMed] [Google Scholar]
  30. Stone BF, Haydock KP. 1962. A method for measuring the acaricide-susceptibility of the cattle tick Boophilus microplus (Can.). Bulletin of Entomological Research, 53, 563–578. [CrossRef] [Google Scholar]
  31. Temeyer KB, Pruett JH, Untalan PM, Chen AC. 2006. Baculovirus expression of BmAChE3, a cDNA encoding an acetylcholinesterase of Boophilus microplus (Acari: Ixodidae). Journal of Medical Entomology, 43, 707–712. [CrossRef] [PubMed] [Google Scholar]
  32. UniProt Consortium. 2023. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51, D523–D531. [CrossRef] [PubMed] [Google Scholar]
  33. Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M. 2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proceedings of the Royal Society of London B, 269, 2007–2016. [CrossRef] [PubMed] [Google Scholar]
  34. Wright FC, Ahrens EH. 1988. Cholinesterase insensitivity: a mechanism of resistance in Mexican strains of Boophilus microplus (Acari: Ixodidae) against coumaphos. Journal of Medical Entomology, 25, 234–239. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.