Open Access
Volume 31, 2024
Article Number 5
Number of page(s) 18
Published online 08 February 2024
  1. Anjos CC, Chagas CRF, Fecchio A, Schunck F, Costa-Nascimento MJ, Monteiro EF, Mathias BS, Bell JA, Guimarães LO, Comiche KJM, Valkiūnas G, Kirchgatter K. 2021. Avian malaria and related parasites from resident and migratory birds in the Brazilian Atlantic Forest, with description of a new Haemoproteus species. Pathogens, 10, 103. [CrossRef] [PubMed] [Google Scholar]
  2. Barino GTM, Rossi MF, de Oliveira L, Reis Junior JL, D’Agosto M, Dias RJP. 2021. Haemoproteus syrnii (Haemosporida: Haemoproteidae) in owls from Brazil: morphological and molecular characterization, potential cryptic species, and exo-erythrocytic stages. Parasitology Research, 120, 243–255. [CrossRef] [PubMed] [Google Scholar]
  3. Bastien M, Jaeger A, Le Corre M, Tortosa P, Lebarbenchon C. 2014. Haemoproteus iwa in great frigatebirds (Fregata minor) in the islands of the Western Indian Ocean. PLoS One, 9, e97185. [CrossRef] [PubMed] [Google Scholar]
  4. Bennett GF, Garnham PC, Fallis AM. 1965. On the status of the genera Leukocytozoon Zieman, 1898 and Haemoproteus Kruse, 1890 (Haemosporidiida: Leucocytozoidae and Haemoproteidae). Canadian Journal of Zoology, 43, 927–932. [CrossRef] [PubMed] [Google Scholar]
  5. Bennett GF, Campbell AG. 1972. Avian Haemoproteidae. I. Description of Haemoproteus fallisi n. sp. and a review of the haemoproteids of the family Turdidae. Canadian Journal of Zoology, 50, 1269–1275. [CrossRef] [PubMed] [Google Scholar]
  6. Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT. 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of Biological Sciences, 267, 1583–1589. [CrossRef] [PubMed] [Google Scholar]
  7. Bensch S, Hellgren O, Pérez-Tris J. 2009. MalAvi: a public database of malaria parasites and related Haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, 9, 1353–1358. [CrossRef] [PubMed] [Google Scholar]
  8. Bensch S, Hellgren O. 2020. The use of molecular methods in studies of avian Haemosporidians, in Avian malaria and related parasites in the tropics: ecology, evolution and systematics. Santiago-Alarcon D, Marzal A, Editors. Springer. p. 113–136. [CrossRef] [Google Scholar]
  9. Bertram MR, Hamer SA, Hartup BK, Snowden KF, Medeiros MC, Outlaw DC, Hamer GL. 2017. A novel Haemosporida clade at the rank of genus in North American cranes (Aves: Gruiformes). Molecular Phylogenetics and Evolution, 109, 73–79. [CrossRef] [PubMed] [Google Scholar]
  10. Bernotienė R, Žiegytė R, Vaitkutė G, Valkiūnas G. 2019. Identification of a new vector species of avian haemoproteids, with a description of methodology for the determination of natural vectors of haemosporidian parasites. Parasites & Vectors, 12, 307. [CrossRef] [PubMed] [Google Scholar]
  11. Borner J, Pick C, Thiede J, Kolawole OM, Kingsley MT, Schulze J, Cottontail VM, Wellinghausen N, Schmidt-Chanasit J, Bruchhaus I, Burmester T. 2016. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Molecular Phylogenetics and Evolution, 94, 221–231. [CrossRef] [PubMed] [Google Scholar]
  12. Chakarov N, Linke B, Boerner M, Goesmann A, Krüger O, Hoffman JI. 2015. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Molecular Ecology, 24, 1355–1363. [CrossRef] [PubMed] [Google Scholar]
  13. Clark NJ, Clegg SM, Lima MR. 2014. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. International Journal for Parasitology, 44, 329–338. [CrossRef] [PubMed] [Google Scholar]
  14. Fecchio A, Chagas CRF, Bell JA, Kirchgatter K. 2020. Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Tropica, 204, 105364. [CrossRef] [PubMed] [Google Scholar]
  15. Galen SC, Borner J, Martinsen ES, Schaer J, Austin CC, West CJ, Perkins SL. 2018. Comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. Royal Society Open Science, 5, 171780. [CrossRef] [PubMed] [Google Scholar]
  16. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series, 41, 95–98. [Google Scholar]
  17. Hanel J, Doležalová J, Stehlíková Š, Modrý D, Chudoba J, Synek P, Votýpka J. 2016. Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi. Parasitology Research, 115, 263–270. [CrossRef] [PubMed] [Google Scholar]
  18. Harl J, Himmel Tanja, Valkiūnas G, Ilgūnas M, Nedorost N, Matt J, Kübber-Heiss A, Alic A, Konicek C, Weissenböck H. 2022. Avian haemosporidian parasites of accipitriform raptors. Malaria Journal, 21, 14. [CrossRef] [PubMed] [Google Scholar]
  19. Hellgren O, Waldenström J, Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology, 90, 797–802. [CrossRef] [PubMed] [Google Scholar]
  20. Hellgren O, Krizanauskiene A, Valkiūnas G, Bensch S. 2007. Diversity and phylogeny of mitochondrial cytochrome B lineages from six morphospecies of avian Haemoproteus (Haemosporida: Haemoproteidae). Journal of Parasitology, 93, 889–896. [CrossRef] [PubMed] [Google Scholar]
  21. Hikosaka K, Kita K, Tanabe K. 2013. Diversity of mitochondrial genome structure in the phylum Apicomplexa. Molecular Biochemical Parasitology, 188, 26–33. [CrossRef] [Google Scholar]
  22. Huang X, Rapševičius P, Chapa-Vargas L, Hellgren O, Bensch S. 2019. Within-lineage divergence of avian Haemosporidians: A case study to reveal the origin of a widespread Haemoproteus parasite. Journal of Parasitology, 105, 414–422. [CrossRef] [PubMed] [Google Scholar]
  23. Ilgūnas M, Himmel T, Harl J, Dagys M, Valkiūnas G, Weissenböck H. 2022. Exo-erythrocytic development of avian Haemosporidian parasites in European owls. Animals, 28, 2212. [CrossRef] [PubMed] [Google Scholar]
  24. Ishak HD, Loiseau C, Hull AC, Sehgal RNM. 2010. Prevalence of blood parasites in migrating and wintering California hawks. Journal of Raptor Research, 44, 215–223. [CrossRef] [Google Scholar]
  25. Ishtiaq F, Rao M, Huang X, Bensch S. 2017. Estimating prevalence of avian haemosporidians in natural populations: a comparative study on screening protocols. Parasites & Vectors, 10, 127. [CrossRef] [PubMed] [Google Scholar]
  26. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology & Evolution, 30, 772–780. [CrossRef] [PubMed] [Google Scholar]
  27. Karadjian G, Hassanin A, Saintpierre B, Gembu Tungaluna GC, Ariey F, Ayala FJ, Landau I, Duval L. 2016. Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats. Proceedings of the National Academy of Sciences USA, 113, 9834–9839. [CrossRef] [PubMed] [Google Scholar]
  28. Kovács A, Mammen UCC, Wernham CV. 2008. European monitoring for raptors and owls: state of the art and future needs. Ambio, 37, 408–412. [CrossRef] [PubMed] [Google Scholar]
  29. Krone O, Waldenström J, Valkiūnas G, Lessow O, Müller K, Iezhova TA, Fickel J, Bensch S. 2008. Haemosporidian blood parasites in European birds of prey and owls. Journal of Parasitology, 94, 709–715. [CrossRef] [PubMed] [Google Scholar]
  30. Levine ND, Campbell GR. 1971. A check-list of the species of the genus Haemoproteus (Apicomplexa, Plasmodiidae). Journal of Protozoology, 18, 475–484. [CrossRef] [PubMed] [Google Scholar]
  31. Levin II, Valkiūnas G, Iezhova TA, O’Brien SL, Parker PG. 2012. Novel Haemoproteus species (Haemosporida: Haemoproteidae) from the swallow-tailed gull (Lariidae), with remarks on the host range of hippoboscid-transmitted avian hemoproteids. Journal of Parasitology, 98, 847–854. [CrossRef] [PubMed] [Google Scholar]
  32. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25, 1754–1760. [CrossRef] [PubMed] [Google Scholar]
  33. Matoso RV, Cedrola F, Barino GTM, Dias RJP, Rossi MF, D’Agosto M. 2021. New morphological and molecular data for Haemoproteus (H.) paramultipigmentatus in the Atlantic Forest of Brazil. Parasitology International, 84, 102375. [CrossRef] [PubMed] [Google Scholar]
  34. de Mello IF. 1935. New haemoproteids of some Indian birds. Proceedings of the Indian Academy of Sciences, 2, 469–475. [CrossRef] [Google Scholar]
  35. Merino S, Hennicke J, Martínez J, Ludynia K, Torres R, Work TM, Stroud S, Masello JF, Quillfeldt P. 2012. Infection by Haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae). Journal of Parasitology, 98, 388–397. [CrossRef] [PubMed] [Google Scholar]
  36. Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols, 6, 5448. [Google Scholar]
  37. McClure CJW, Westrip JRS, Johnson JA, Schulwitz SE, Virani MZ, Davies Symes A, Wheatley H, Thorstrom R, Amar A, Buij R, Jones VR, Williams NP, Buechley ER, Butchart SHM. 2018. State of the world’s raptors: Distributions, threats, and conservation recommendations. Biological Conservation, 227, 390–402. [CrossRef] [Google Scholar]
  38. Morel AP, Webster A, Prusch F, Anicet M, Marsicano G, Trainini G, Stocker J, Giani D, Bandarra PM, da Rocha MIS, Zitelli LC, Umeno KA, Souza UA, Dall’Agnol B, Reck J. 2021. Molecular detection and phylogenetic relationship of Haemosporida parasites in free-ranging wild raptors from Brazil. Veterinary Parasitology, Regional Studies and Reports, 23, 100521. [CrossRef] [PubMed] [Google Scholar]
  39. Negro JJ, Rodríguez-Rodríguez EJ, Rodríguez A, Bildstein K. 2022. Generation of raptor diversity in Europe: linking speciation with climate changes and the ability to migrate. PeerJ, 10, e14505. [CrossRef] [PubMed] [Google Scholar]
  40. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology Evolution, 32, 268–274. [CrossRef] [PubMed] [Google Scholar]
  41. Nilsson E, Taubert H, Hellgren O, Huang X, Palinauskas V, Markovets MY, Valkiūnas G, Bensch S. 2016. Multiple cryptic species of sympatric generalists within the avian blood parasite Haemoproteus majoris. Journal of Evolutionary Biology, 29, 1812–1826. [CrossRef] [PubMed] [Google Scholar]
  42. Nourani L, Aliabadian M, Mirshamsi O, Dinparast Djadid N. 2022. Prevalence of co-infection and genetic diversity of avian haemosporidian parasites in two rehabilitation facilities in Iran: implications for the conservation of captive raptors. BMC Ecology and Evolution, 22, 114. [CrossRef] [PubMed] [Google Scholar]
  43. Outlaw DC, Ricklefs RE. 2009. On the phylogenetic relationships of haemosporidian parasites from raptorial birds (Falconiformes and Strigiformes). Journal of Parasitology, 95, 1171–1176. [CrossRef] [PubMed] [Google Scholar]
  44. Peirce MA, Bennett GF, Bishop M. 1990. The haemoproteids of the avian order Falconiformes. Journal of Natural History, 24, 1091–1100. [CrossRef] [Google Scholar]
  45. Pornpanom P, Kasorndorkbua C, Lertwatcharasarakul P, Salakij C. 2021. Prevalence and genetic diversity of Haemoproteus and Plasmodium in raptors from Thailand: Data from rehabilitation center. International Journal for Parasitology, Parasites and Wildlife, 16, 75–82. [CrossRef] [Google Scholar]
  46. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative Genomics Viewer. Nature Biotechnology, 29, 24–26. [CrossRef] [PubMed] [Google Scholar]
  47. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61, 539–542. [CrossRef] [PubMed] [Google Scholar]
  48. Sehgal RNM. 2015. Manifold habitat effects on the prevalence and diversity of avian blood parasites. International Journal for Parasitology: Parasites and Wildlife, 4, 421–430. [CrossRef] [Google Scholar]
  49. Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Golding GB, Hajibabaei M. 2015. Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Scientific Reports, 5, 9687. [CrossRef] [PubMed] [Google Scholar]
  50. Svobodová M, Weidinger K, Peške L, Volf P, Votýpka J, Voříšek P. 2015. Trypanosomes and haemosporidia in the buzzard (Buteo buteo) and sparrowhawk (Accipiter nisus): factors affecting the prevalence of parasites. Parasitology Research, 114, 551–560. [CrossRef] [PubMed] [Google Scholar]
  51. Svobodová M, Čepička I, Zídková L, Kassahun A, Votýpka J, Peške L, Hrazdilová K, Brzoňová J, Voříšek P, Weidinger K. 2023. Blood parasites (Trypanosoma, Leucocytozoon, Haemoproteus) in the Eurasian sparrowhawk (Accipiter nisus): diversity, incidence and persistence of infection at the individual level. Parasites & Vectors, 16, 15. [CrossRef] [PubMed] [Google Scholar]
  52. Toscani Field J, Weinberg J, Bensch S, Matta NE, Valkiūnas G, Sehgal RNM. 2018. Delineation of the genera Haemoproteus and Plasmodium using RNA-Seq and multi-gene phylogenetics. Journal of Molecular Evolution, 86, 646–654. [CrossRef] [PubMed] [Google Scholar]
  53. Valkiūnas G. 2005. Avian malaria parasites and other haemosporidia, 1st edn. CRC Press: Boca Raton, Florida. [Google Scholar]
  54. Valkiūnas G, Ilgūnas M, Bukauskaitė D, Iezhova TA. 2016. Description of Haemoproteus ciconiae sp. nov. (Haemoproteidae, Haemosporida) from the white stork Ciconia ciconia, with remarks on insensitivity of established polymerase chain reaction assays to detect this infection. Parasitology Research, 7, 2609–2616. [CrossRef] [PubMed] [Google Scholar]
  55. Valkiūnas G, Ilgūnas M, Bukauskaitė D, Fragner K, Weissenböck H, Atkinson CT, Iezhova TA. 2018. Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria. Malaria Journal, 17, 184. [CrossRef] [PubMed] [Google Scholar]
  56. Valkiūnas G, Ilgūnas M, Bukauskaitė D, Chagas CRF, Bernotienė R, Himmel T, Harl J, Weissenböck H, Iezhova TA. 2019. Molecular characterization of six widespread avian haemoproteids, with description of three new Haemoproteus species. Acta Tropica, 197, 105051. [CrossRef] [PubMed] [Google Scholar]
  57. Valkiūnas G, Ilgūnas M, Chagas CRF, Bernotienė R, Iezhova TA. 2020. Molecular characterization of swallow haemoproteids, with description of one new Haemoproteus species. Acta Tropica, 207, 105486. [CrossRef] [PubMed] [Google Scholar]
  58. Valkiūnas G, Iezhova TA. 2022. Keys to the avian Haemoproteus parasites (Haemosporida, Haemoproteidae). Malaria Journal, 21, 269. [CrossRef] [PubMed] [Google Scholar]
  59. Valkiūnas G, Duc M, Iezhova TA. 2022. Increase of avian Plasmodium circumflexum prevalence, but not of other malaria parasites and related haemosporidians in northern Europe during the past 40 years. Malaria Journal, 21, 105. [CrossRef] [PubMed] [Google Scholar]
  60. Vanstreels RET, Dos Anjos CC, Leandro HJ, Carvalho AM, Santos AP, Egert L, Hurtado R, Carvalho ECQ, Braga ÉM, Kirchgatter K. 2022. A new haemosporidian parasite from the Red-legged Seriema Cariama cristata (Cariamiformes, Cariamidae). International Journal for Parasitology, Parasites and Wildlife, 18, 12–19. [CrossRef] [Google Scholar]
  61. Wingstrand KG. 1947. On some haematozoa of Swedish birds with remarks on the schizogony of Leucocytozoon sakharoffi. Kungliga Svenska Vetenskaps-Akademiens Handlingar, 24, 1–31. [Google Scholar]
  62. Žiegytė R, Bernotienė R, Palinauskas V. 2022. Culicoides segnis and Culicoides pictipennis Biting midges (Diptera, Ceratopogonidae), New reported vectors of Haemoproteus parasites. Microorganisms, 10, 898. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.