Open Access
Volume 31, 2024
Article Number 21
Number of page(s) 12
Published online 10 April 2024
  1. Akl T, Bourgoin G, Souq M-L, Appolinaire J, Poirel M-T, Gibert P, Abi Rizk G, Garel M, Zenner L. 2019. Detection of tick-borne pathogens in questing Ixodes ricinus in the French Pyrenees and first identification of Rickettsia monacensis in France. Parasite, 26, 20. [Google Scholar]
  2. Beati L, Raoult D. 1993. Rickettsia massiliae sp. nov., a new spotted fever group Rickettsia. International Journal of Systematic Bacteriology, 43, 839–840. [Google Scholar]
  3. Black WC, Piesman J. 1994. Phylogeny of hard-and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences, 91, 10034–10038. [Google Scholar]
  4. Cabezas-Cruz A, Gallois M, Fontugne M, Allain E, Denoual M, Moutailler S, Devillers E, Zientara S, Memmi M, Chauvin A, Agoulon A, Vayssier-Taussat M, Chartier C. 2019. Epidemiology and genetic diversity of Anaplasma ovis in goats in Corsica, France. Parasites & Vectors, 12, 3. [Google Scholar]
  5. Chisu V, Alberti A, Zobba R, Foxi C, Masala G. 2019. Molecular characterization and phylogenetic analysis of Babesia and Theileria spp. in ticks from domestic and wild hosts in Sardinia. Acta Tropica, 196, 60–65. [Google Scholar]
  6. Chisu V, Foxi C, Mannu R, Satta G, Masala G. 2018. A five-year survey of tick species and identification of tick-borne bacteria in Sardinia, Italy. Ticks and Tick-Borne Diseases, 9, 678–681. [Google Scholar]
  7. Chisu V, Leulmi H, Masala G, Piredda M, Foxi C, Parola P. 2017. Detection of Rickettsia hoogstraalii, Rickettsia helvetica, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii in ticks from Sardinia, Italy. Ticks and Tick-Borne Diseases, 8, 347–352. [Google Scholar]
  8. Chochlakis D, Ioannou I, Sandalakis V, Dimitriou T, Kassinis N, Papadopoulos B, Tselentis Y, Psaroulaki A. 2012. Spotted fever group Rickettsiae in ticks in Cyprus. Microbial Ecology, 63, 314–323. [Google Scholar]
  9. Chochlakis D, Ioannou I, Tselentis Y, Psaroulaki A. 2010. Human anaplasmosis and Anaplasma ovis variant. Emerging Infectious Diseases, 16, 1031–1032. [Google Scholar]
  10. Cicculli V, Capai L, Quilichini Y, Masse S, Fernández-Alvarez A, Minodier L, Bompard P, Charrel R, Falchi A. 2019. Molecular investigation of tick-borne pathogens in ixodid ticks infesting domestic animals (cattle and sheep) and small rodents (black rats) of Corsica, France. Ticks and Tick-Borne Diseases, 10, 606–613. [Google Scholar]
  11. Cicculli V, Maestrini O, Casabianca F, Villechenaud N, Charrel R, de Lamballerie X, Falchi A. 2019. Molecular detection of spotted-fever group Rickettsiae in ticks collected from domestic and wild animals in Corsica, France. Pathogens, 8, 138. [Google Scholar]
  12. Criado-Fornelio A, Buling A, Pingret JL, Etievant M, Boucraut-Baralon C, Alongi A, Agnone A, Torina A. 2009. Hemoprotozoa of domestic animals in France: Prevalence and molecular characterization. Veterinary Parasitology, 159, 73–76. [Google Scholar]
  13. Dahmani M, Davoust B, Rousseau F, Raoult D, Fenollar F, Mediannikov O. 2017. Natural Anaplasmataceae infection in Rhipicephalus bursa ticks collected from sheep in the French Basque country. Ticks and Tick-Borne Diseases, 8, 18–24. [Google Scholar]
  14. Dahmani M, Davoust B, Tahir D, Raoult D, Fenollar F, Mediannikov O. 2017. Molecular investigation and phylogeny of Anaplasmataceae species infecting domestic animals and ticks in Corsica, France. Parasites & Vectors, 10, 302. [Google Scholar]
  15. Dantas-Torres F, Chomel BB, Otranto D. 2012. Ticks and tick-borne diseases: a one health perspective. Trends in Parasitology, 28, 437–446. [Google Scholar]
  16. Dautel H, Dippel C, Kämmer D, Werkhausen A, Kahl O. 2008. Winter activity of Ixodes ricinus in a Berlin forest. International Journal of Medical Microbiology, 298, 50–54. [Google Scholar]
  17. Davoust B, Socolovschi C, Revelli P, Gibert P, Marié J-L, Raoult D, Parola P. 2012. Detection of Rickettsia helvetica in Ixodes ricinus ticks collected from Pyrenean chamois in France. Ticks and Tick-Borne Diseases, 3, 387–388. [Google Scholar]
  18. De Clercq EM, Vanwambeke SO, Sungirai M, Adehan S, Lokossou R, Madder M. 2012. Geographic distribution of the invasive cattle tick Rhipicephalus microplus, a country-wide survey in Benin. Experimental and Applied Acarology, 58, 441–452. [Google Scholar]
  19. Duh D, Punda-Polic V, Avsic-Zupanc T, Bouyer D, Walker DH, Popov VL, Jelovsek M, Gracner M, Trilar T, Bradaric N. 2010. Rickettsia hoogstraalii sp. nov., isolated from hard-and soft-bodied ticks. International Journal of Systematic and Evolutionary Microbiology, 60, 977–984. [Google Scholar]
  20. Duh D, Punda-Polić V, Trilar T, Petrovec M, Bradarić N, Avšič-Županc T. 2006. Molecular identification of Rickettsia felis-like bacteria in Haemaphysalis sulcata ticks collected from domestic animals in Southern Croatia. Annals of the New York Academy of Sciences, 1078, 347–351. [Google Scholar]
  21. Eisen L, Eisen RJ, Lane RS. 2002. Seasonal activity patterns of Ixodes pacificus nymphs in relation to climatic conditions. Medical and Veterinary Entomology, 16, 235–244. [Google Scholar]
  22. Estrada-Peña A. 2015. Ticks as vectors: taxonomy, biology and ecology. Revue Scientifique et Technique (International Office of Epizootics), 34, 53–65. [Google Scholar]
  23. Estrada-Peña A, Horak IG, Petney T. 2008. Climate changes and suitability for the ticks Amblyomma hebraeum and Amblyomma variegatum (Ixodidae) in Zimbabwe (1974–1999). Veterinary Parasitology, 151, 256–267. [Google Scholar]
  24. Estrada-Peña A, Mihalca AD, Petney TN. 2018. Ticks of Europe and North Africa: a guide to species identification. Cham: Springer. [Google Scholar]
  25. de la Fuente J, Ruiz-Fons F, Naranjo V, Torina A, Rodríguez O, Gortázar C. 2008. Evidence of Anaplasma infections in European roe deer (Capreolus capreolus) from southern Spain. Research in Veterinary Science, 84, 382–386. [Google Scholar]
  26. Garcia-Sanmartin J, Aurtenetxe O, Barral M, Marco I, Lavin S, Garcia-Perez AL, Hurtado A. 2007. Molecular detection and characterization of piroplasms infecting cervids and chamois in Northern Spain. Parasitology, 134, 391–398. [Google Scholar]
  27. García-Sanmartín J, Barandika JF, Juste RA, García-Pérez AL, Hurtado A. 2008. Distribution and molecular detection of Theileria and Babesia in questing ticks from northern Spain. Medical and Veterinary Entomology, 22, 318–325. [Google Scholar]
  28. Garel M, Cugnasse J-M, Gaillard J-M, Loison A, Gibert P, Douvre P, Dubray D. 2005. Reproductive output of female mouflon (Ovis gmelini musimon × Ovis sp.): a comparative analysis. Journal of Zoology, 266, 65–71. [Google Scholar]
  29. Gibert P. 2017. Surveillance sanitaire de la faune sauvage. Rueil Malmaison: Les éditions du Point vétérinaire. [Google Scholar]
  30. Gilbert L, Aungier J, Tomkins JL. 2014. Climate of origin affects tick (Ixodes ricinus) host-seeking behavior in response to temperature: implications for resilience to climate change? Ecology and Evolution, 4, 1186–1198. [Google Scholar]
  31. Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E. 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdisciplinary Perspectives on Infectious Diseases, 2009, 593232. [Google Scholar]
  32. Grech-Angelini S, Stachurski F, Lancelot R, Boissier J, Allienne J-F, Marco S, Maestrini O, Uilenberg G. 2016. Ticks (Acari: Ixodidae) infesting cattle and some other domestic and wild hosts on the French Mediterranean island of Corsica. Parasites & Vectors, 9, 582. [Google Scholar]
  33. Grech-Angelini S, Stachurski F, Vayssier-Taussat M, Devillers E, Casabianca F, Lancelot R, Uilenberg G, Moutailler S. 2020. Tick-borne pathogens in ticks (Acari: Ixodidae) collected from various domestic and wild hosts in Corsica (France), a Mediterranean island environment. Transboundary and Emerging Diseases, 67, 745–757. [Google Scholar]
  34. Halos L, Bord S, Cotté V, Gasqui P, Abrial D, Barnouin J, Boulouis H-J, Vayssier-Taussat M, Vourc’h G. 2010. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Applied and Environmental Microbiology, 76, 4413–4420. [Google Scholar]
  35. Halos L, Vourc’h G, Cotte V, Gasqui P, Barnouin J, Boulous H-J, Vayssier-Taussat M. 2006. Prevalence of Anaplasma phagocytophilum, Rickettsia sp. and Borrelia burgdorferi sensu lato DNA in questing Ixodes ricinus ticks from France. Annals of the New York Academy of Sciences, 1078, 316–319. [Google Scholar]
  36. Halos L, Jamal T, Maillard R, Beugnet F, Le Menach A, Boulouis H-J, Vayssier-Taussat M. 2005. Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and co-infection with Borrelia burgdorferi sensu lato and Babesia sp. Veterinary Research, 36, 79–87. [Google Scholar]
  37. Herwaldt BL, Cacciò S, Gherlinzoni F, Aspöck H, Slemenda SB, Piccaluga P, Martinelli G, Edelhofer R, Hollenstein U, Poletti G, Pampiglione S, Löschenberger K, Tura S, Pieniazek NJ. 2003. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerging Infectious Diseases, 9, 943–948. [Google Scholar]
  38. Heyman P, Cochez C, Hofhuis A, Van Der Giessen J, Sprong H, Porter SR, Losson B, Saegerman C, Donoso-Mantke O, Niedrig M. 2010. A clear and present danger: tick-borne diseases in Europe. Expert Review of Anti-Infective Therapy, 8, 33–50. [Google Scholar]
  39. Hoby S, Robert N, Mathis A, Schmid N, Meli ML, Hofmann-Lehmann R, Lutz H, Deplazes P, Ryser-Degiorgis M-P. 2007. Babesiosis in free-ranging chamois (Rupicapra r. rupicapra) from Switzerland. Veterinary Parasitology, 148, 341–345. [Google Scholar]
  40. Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. 2000. Babesiosis. Clinical Microbiology Reviews, 13, 451–469. [Google Scholar]
  41. Hornok S, Horváth G, Jongejan F, Farkas R. 2012. Ixodid ticks on ruminants, with on-host initiated moulting (apolysis) of Ixodes, Haemaphysalis and Dermacentor larvae. Veterinary Parasitology, 187, 350–353. [Google Scholar]
  42. Ioannou I, Sandalakis V, Kassinis N, Chochlakis D, Papadopoulos B, Loukaides F, Tselentis Y, Psaroulaki A. 2011. Tick-borne bacteria in mouflons and their ectoparasites in Cyprus. Journal of Wildlife Diseases, 47, 300–306. [Google Scholar]
  43. Ivan T, Matei IA, Ștefania Novac C, Kalmár Z, Borșan S-D, Panait L-C, Gherman CM, Ionică AM, Papuc I, Mihalca AD. 2022. Spotted fever group Rickettsia spp. diversity in ticks and the first report of Rickettsia hoogstraalii in Romania. Veterinary Sciences, 9, 343. [Google Scholar]
  44. Jado I, Oteo JA, Aldámiz M, Gil H, Escudero R, Ibarra V, Portu J, Portillo A, Lezaun MJ, García-Amil C, Rodríguez-Moreno I, Anda P. 2007. Rickettsia monacensis and human disease, Spain. Emerging Infectious Diseases, 13, 1405–1407. [Google Scholar]
  45. Jaenson TG, Hjertqvist M, Bergström T, Lundkvist Å. 2012. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites & Vectors, 5, 184. [Google Scholar]
  46. Jaenson TG, Jaenson DG, Eisen L, Petersson E, Lindgren E. 2012. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites & Vectors, 5, 8. [PubMed] [Google Scholar]
  47. Jahfari S, Coipan EC, Fonville M, van Leeuwen AD, Hengeveld P, Heylen D, Heyman P, van Maanen C, Butler CM, Földvári G, Szekeres S, van Duijvendijk G, Tack W, Rijks JM, van der Giessen J, Takken W, van Wieren SE, Takumi K, Sprong H. 2014. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites & Vectors, 7, 365. [Google Scholar]
  48. Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygård K, Brun E, Ottesen P, Sævik BK, Ytrehus B. 2011. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasites & Vectors, 4, 1–11. [Google Scholar]
  49. Jungnick S, Margos G, Rieger M, Dzaferovic E, Bent SJ, Overzier E, Silaghi C, Walder G, Wex F, Koloczek J, Sing A, Fingerle V. 2015. Borrelia burgdorferi sensu stricto and Borrelia afzelii: Population structure and differential pathogenicity. International Journal of Medical Microbiology, 305, 673–681. [Google Scholar]
  50. Kauffmann M, Rehbein S, Hamel D, Lutz W, Heddergott M, Pfister K, Silaghi C. 2017. Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Molecular and Cellular Probes, 31, 46–54. [Google Scholar]
  51. Kawabata H, Ando S, Kishimoto T, Kurane I, Takano A, Nogami S, Fujita H, Tsurumi M, Nakamura N, Sato F, Takahashi M, Ushijima Y, Fukunaga M, Watanabe H. 2006. First detection of Rickettsia in soft-bodied ticks associated with Seabirds, Japan. Microbiology and Immunology, 50, 403–406. [Google Scholar]
  52. Kazimírová M, Hamšíková Z, Špitalská E, Minichová L, Mahríková L, Caban R, Sprong H, Fonville M, Schnittger L, Kocianová E. 2018. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasites & Vectors, 11, 495. [Google Scholar]
  53. Kjelland V, Ytrehus B, Stuen S, Skarpaas T, Slettan A. 2011. Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks collected from moose (Alces alces) and roe deer (Capreolus capreolus) in southern Norway. Ticks and Tick-Borne Diseases, 2, 99–103. [Google Scholar]
  54. Kogler S, Gotthalmseder E, Shahi-Barogh B, Harl J, Fuehrer H-P. 2021. Babesia spp. and Anaplasma phagocytophilum in free-ranging wild ungulates in central Austria. Ticks and Tick-Borne Diseases, 12, 101719. [Google Scholar]
  55. Kooshki H, Goudarzi G, Faghihi F, Telmadarraiy Z, Edalat H, Hosseini-Chegeni A. 2020. The first record of Rickettsia hoogstraalii (Rickettsiales: Rickettsiaceae) from Argas persicus (Acari: Argasidae) in Iran. Systematic and Applied Acarology, 25, 1611–1617. [Google Scholar]
  56. Kourkgy C, Garel M, Appolinaire J, Loison A, Toïgo C. 2016. Onset of autumn shapes the timing of birth in Pyrenean chamois more than onset of spring. Journal of Animal Ecology, 85, 581–590. [Google Scholar]
  57. Kurtenbach K, De Michelis S, Etti S, Schäfer SM, Sewell H-S, Brade V, Kraiczy P. 2002. Host association of Borrelia burgdorferi sensu lato – the key role of host complement. Trends in Microbiology, 10, 74–79. [Google Scholar]
  58. Latas P, Auckland LD, Teel PD, Hamer SA. 2020. Argas (persicargas) giganteus soft tick infection with Rickettsia hoogstraali and relapsing fever Borrelia on wild avian species of the desert southwest, USA. Journal of Wildlife Diseases, 56, 113–125. [Google Scholar]
  59. Léger E, Vourc’h G, Vial L, Chevillon C, McCoy KD. 2013. Changing distributions of ticks: causes and consequences. Experimental and Applied Acarology, 59, 219–244. [Google Scholar]
  60. Madeddu G, Mancini F, Caddeo A, Ciervo A, Babudieri S, Maida I, Fiori ML, Rezza G, Mura MS. 2012. Rickettsia monacensis as cause of Mediterranean spotted fever–like illness, Italy. Emerging Infectious Diseases, 18, 702–704. [Google Scholar]
  61. Materna J, Daniel M, Metelka L, Harcarik J. 2008. The vertical distribution, density and the development of the tick Ixodes ricinus in mountain areas influenced by climate changes (The Krkonoše Mts., Czech Republic). International Journal of Medical Microbiology, 298, 25–37. [Google Scholar]
  62. Matsumoto K, Ogawa M, Brouqui P, Raoult D, Parola P. 2005. Transmission of Rickettsia massiliae in the tick, Rhipicephalus turanicus. Medical and Veterinary Entomology, 19, 263–270. [Google Scholar]
  63. Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, Golovljova I, Jaenson TG, Jensen J-K, Jensen PM. 2013. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites & Vectors, 6, 1. [Google Scholar]
  64. Michel AO, Mathis A, Ryser-Degiorgis M-P. 2014. Babesia spp. in European wild ruminant species: parasite diversity and risk factors for infection. Veterinary Research, 45, 65. [Google Scholar]
  65. Michelet L, Joncour G, Devillers E, Torina A, Vayssier-Taussat M, Bonnet SI, Moutailler S. 2016. Tick species, tick-borne pathogens and symbionts in an insular environment off the coast of Western France. Ticks and Tick-Borne Diseases, 7, 1109–1115. [Google Scholar]
  66. Moraga-Fernández A, Chaligiannis I, Cabezas-Cruz A, Papa A, Sotiraki S, de la Fuente J, Fernández G, de Mera I. 2019. Molecular identification of spotted fever group Rickettsia in ticks collected from dogs and small ruminants in Greece. Experimental and Applied Acarology, 78, 421–430. [Google Scholar]
  67. Mysterud A, Stigum VM, Jaarsma RI, Sprong H. 2019. Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Scientific Reports, 9, 5088. [Google Scholar]
  68. Nelson DR, Rooney S, Miller NJ, Mather TN. 2000. Complement-mediated killing of Borrelia burgdorferi by nonimmune sera from sika deer. Journal of Parasitology, 86, 1232–1238. [Google Scholar]
  69. Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O’Callaghan CJ, Waltner-Toews D, Barker IK. 2004. Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. Journal of Medical Entomology, 41, 622–633. [Google Scholar]
  70. Ogden NH, Lindsay LR, Hanincová K, Barker IK, Bigras-Poulin M, Charron DF, Heagy A, Francis CM, O’Callaghan CJ, Schwartz I, Thompson RA. 2008. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Applied and Environmental Microbiology, 74, 1780–1790. [Google Scholar]
  71. Ogden NH, Lindsay LR. 2016. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends in Parasitology, 32, 646–656. [Google Scholar]
  72. Olwoch JM, Jaarsveld ASV, Scholtz CH, Horak IG. 2007. Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort Journal of Veterinary Research, 74, 45–72. [Google Scholar]
  73. Omeragic J. 2011. Ixodid ticks in Bosnia and Herzegovina. Experimental and Applied Acarology, 53, 301–309. [Google Scholar]
  74. Orkun Ö, Karaer Z, Çakmak A, Nalbantoğlu S. 2014. Spotted fever group rickettsiae in ticks in Turkey. Ticks and Tick-Borne Diseases, 5, 213–218. [Google Scholar]
  75. Pacilly FCA, Benning ME, Jacobs F, Leidekker J, Sprong H, Van Wieren SE, Takken W. 2014. Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus. Ticks and Tick-Borne Diseases, 5, 810–817. [Google Scholar]
  76. Pader V, Buniak JN, Abdissa A, Adamu H, Tolosa T, Gashaw A, Cutler RR, Cutler SJ. 2012. Candidatus Rickettsia hoogstraalii in Ethiopian Argas persicus ticks. Ticks and Tick-Borne Diseases, 3, 338–345. [Google Scholar]
  77. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier P-E, Raoult D. 2013. Update on tick-borne rickettsioses around the world: a geographic approach. Clinical Microbiology Reviews, 26, 657–702. [Google Scholar]
  78. Pascucci I, Antognini E, Canonico C, Montalbano MG, Necci A, di Donato A, Moriconi M, Morandi B, Morganti G, Crotti S, Gavaudan S. 2022. One Health approach to rickettsiosis: a five-year study on spotted fever group Rickettsiae in ticks collected from humans, animals and environment. Microorganisms, 10, 35. [Google Scholar]
  79. Pereira A, Parreira R, Cotão AJ, Nunes M, Vieira ML, Azevedo F, Campino L, Maia C. 2018. Tick-borne bacteria and protozoa detected in ticks collected from domestic animals and wildlife in central and southern Portugal. Ticks and Tick-Borne Diseases, 9, 225–234. [Google Scholar]
  80. Pereira A, Parreira R, Nunes M, Casadinho A, Vieira ML, Campino L, Maia C. 2016. Molecular detection of tick-borne bacteria and protozoa in cervids and wild boars from Portugal. Parasites & Vectors, 9, 251. [Google Scholar]
  81. Pérez-Eid C. 2007. Les tiques: identification, biologie, importance médicale et vétérinaire. Paris, France: Lavoisier. [Google Scholar]
  82. Pistone D, Pajoro M, Novakova E, Vicari N, Gaiardelli C, Vigano R, Luzzago C, Montagna M, Lanfranchi P. 2017. Ticks and bacterial tick-borne pathogens in Piemonte region, Northwest Italy. Experimental and Applied Acarology, 73, 477–491. [Google Scholar]
  83. Portanier E, Chevret P, Gélin P, Benedetti P, Sanchis F, Barbanera F, Kaerle C, Queney G, Bourgoin G, Devillard S, Garel M. 2022. New insights into the past and recent evolutionary history of the Corsican mouflon (Ovis gmelini musimon) to inform its conservation. Conservation Genetics, 23, 91–107. [Google Scholar]
  84. Portillo A, Santibáñez P, Santibáñez S, Pérez-Martínez L, Oteo JA. 2008. Detection of Rickettsia spp. in Haemaphysalis ticks collected in La Rioja. Spain. Vector-Borne and Zoonotic Diseases, 8, 653–658. [Google Scholar]
  85. Qiu Y, Simuunza M, Kajihara M, Chambaro H, Harima H, Eto Y, Simulundu E, Squarre D, Torii S, Takada A. 2021. Screening of tick-borne pathogens in argasid ticks in Zambia: Expansion of the geographic distribution of Rickettsia lusitaniae and Rickettsia hoogstraalii and detection of putative novel Anaplasma species. Ticks and Tick-Borne Diseases, 12, 101720. [Google Scholar]
  86. Raele DA, Galante D, Pugliese N, De Simone E, Cafiero MA. 2015. Coxiella-like endosymbiont associated to the “Anatolian brown tick” Rhipicephalus bursa in Southern Italy. Microbes and Infection, 17, 799–805. [Google Scholar]
  87. Randolph SE. 2004. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology, 129, S37–S65. [Google Scholar]
  88. Reeves WK, Mans BJ, Durden LA, Miller MM, Gratton EM, Laverty TM. 2020. Rickettsia hoogstraalii and a Rickettsiella from the bat tick Argas transgariepinus, in Namibia. Journal of Parasitology, 106, 663–669. [Google Scholar]
  89. Richter D, Matuschka F-R. 2010. Elimination of Lyme disease spirochetes from ticks feeding on domestic ruminants. Applied and Environmental Microbiology, 76, 7650–7652. [Google Scholar]
  90. Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosà R. 2009. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One, 4, e4336. [Google Scholar]
  91. Santos-Silva MM, Beati L, Santos AS, De Sousa R, Núncio MS, Melo P, Santos-Reis M, Fonseca C, Formosinho P, Vilela C. 2011. The hard-tick fauna of mainland Portugal (Acari: Ixodidae): an update on geographical distribution and known associations with hosts and pathogens. Experimental and Applied Acarology, 55, 85–121. [Google Scholar]
  92. Selmi M, Ballardini M, Salvato L, Ricci E. 2017. Rickettsia spp. in Dermacentor marginatus ticks: analysis of the host-vector-pathogen interactions in a northern Mediterranean area. Experimental and Applied Acarology, 72, 79–91. [Google Scholar]
  93. Silaghi C, Hamel D, Pfister K, Rehbein S. 2011. Babesia species and co-infection with Anaplasma phagocytophilum in free-ranging ungulates from Tyrol (Austria). Wiener Tierärztliche Monatsschrift, 98, 268–274. [Google Scholar]
  94. Sonenshine DE. 1993. Biology of ticks. New York, USA: Oxford University Press. [Google Scholar]
  95. Sousa RD, de Carvalho IL, Santos AS, Bernardes C, Milhano N, Jesus J, Menezes D, Núncio MS. 2012. Role of the lizard Teira dugesii as a potential host for Ixodes ricinus tick-borne pathogens. Applied and Environmental Microbiology, 78, 3767–3769. [Google Scholar]
  96. Sprong H, Wielinga PR, Fonville M, Reusken C, Brandenburg AH, Borgsteede F, Gaasenbeek C, van der Giessen JW. 2009. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasites & Vectors, 2, 41. [Google Scholar]
  97. Stuen S, Granquist EG, Silaghi C. 2013. Anaplasma phagocytophilum – a widespread multi-host pathogen with highly adaptive strategies. Frontiers in Cellular and Infection Microbiology, 3, 31. [Google Scholar]
  98. Sukhiashvili R, Zhgenti E, Khmaladze E, Burjanadze I, Imnadze P, Jiang J, St. John H, Farris CM, Gallagher T, Obiso RJ, Richards AL. 2020. Identification and distribution of nine tick-borne spotted fever group Rickettsiae in the country of Georgia. Ticks and Tick-Borne Diseases, 11, 101470. [Google Scholar]
  99. Tokarevich NK, Tronin AA, Blinova OV, Buzinov RV, Boltenkov VP, Yurasova ED, Nurse J. 2011. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Global Health Action, 4, 1–11. [Google Scholar]
  100. Torina A, Caracappa S. 2012. Tick-borne diseases in sheep and goats: Clinical and diagnostic aspects. Small Ruminant Research, 106, S6–S11. [Google Scholar]
  101. Vaumourin E, Vourc’h G, Telfer S, Lambin X, Salih D, Seitzer U, Morand S, Charbonnel N, Vayssier-Taussat M, Gasqui P. 2014. To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Frontiers in Cellular and Infection Microbiology, 4, 62. [Google Scholar]
  102. Woldehiwet Z. 2010. The natural history of Anaplasma phagocytophilum. Veterinary Parasitology, 167, 108–122. [Google Scholar]
  103. Yabsley MJ, Shock BC. 2013. Natural history of zoonotic Babesia: role of wildlife reservoirs. International Journal for Parasitology: Parasites and Wildlife, 2, 18–31. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.