Open Access
Volume 30, 2023
Article Number 54
Number of page(s) 16
Published online 12 December 2023
  1. Addo-Bediako A, Chown SL, Gaston KJ. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1445), 739–745. [CrossRef] [PubMed] [Google Scholar]
  2. Akaike H. 1973. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265. [CrossRef] [Google Scholar]
  3. Amstrup AB, Bæk I, Loeschcke V, Sørensen JG. 2022. A functional study of the role of Turandot genes in Drosophila melanogaster: An emerging candidate mechanism for inducible heat tolerance. Journal of Insect Physiology, 143, 104456. [CrossRef] [PubMed] [Google Scholar]
  4. Andersen JL, Manenti T, Sørensen JG, Macmillan HA, Loeschcke V, Overgaard J. 2015. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology, 29(1), 55–65. [CrossRef] [Google Scholar]
  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135. [CrossRef] [PubMed] [Google Scholar]
  6. Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B. 2006. The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes to Cells, 11(4), 397–407. [CrossRef] [PubMed] [Google Scholar]
  7. Catalán TP, Wozniak A, Niemeyer HM, Kalergis AM, Bozinovic F. 2012. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. Journal of Insect Physiology, 58(3), 310–317. [CrossRef] [PubMed] [Google Scholar]
  8. Colinet H, Chertemps T, Boulogne I, Siaussat D. 2016. Age-related decline of abiotic stress tolerance in young Drosophila melanogaster adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(12), 1574–1580. [CrossRef] [PubMed] [Google Scholar]
  9. Colinet H, Lee SF, Hoffmann A. 2010. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS Journal, 277(1), 174–185. [CrossRef] [PubMed] [Google Scholar]
  10. Colinet H, Overgaard J, Com E, Sørensen JG. 2013. Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 43(4), 352–365. [CrossRef] [PubMed] [Google Scholar]
  11. Dahlgaard J, Loeschcke V, Michalak P, Justesen J. 1998. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Functional Ecology, 12(5), 786–793. [CrossRef] [Google Scholar]
  12. Davies S-A, Overend G, Sebastian S, Cundall M, Cabrero P, Dow JA, Terhzaz S. 2012. Immune and stress response “cross-talk” in the Drosophila malpighian tubule. Journal of Insect Physiology, 58(4), 488–497. [CrossRef] [PubMed] [Google Scholar]
  13. Denlinger DL. 1991. Relationship between cold hardiness and diapause, in Insects at low temperature. Lee RE, Denlinger DL, Editors. Springer: Boston, MA. p. 174–198. [CrossRef] [Google Scholar]
  14. Dezetter M, Le Galliard J-F, Leroux-Coyau M, Brischoux F, Angelier F, Lourdais O. 2022. Two stressors are worse than one: combined heatwave and drought affect hydration state and glucocorticoid levels in a temperate ectotherm. Journal of Experimental Biology, 225(7), jeb243777. [CrossRef] [PubMed] [Google Scholar]
  15. Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH. 1993. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. Journal of Experimental Zoology, 265(4), 432–437. [CrossRef] [PubMed] [Google Scholar]
  16. Ekengren S, Hultmark D. 2001. A Family of Turandot-related genes in the humoral stress response of Drosophila. Biochemical and Biophysical Research Communications, 284(4), 998–1003. [CrossRef] [PubMed] [Google Scholar]
  17. Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H, Hultmark D. 2001. A humoral stress response in Drosophila. Current Biology, 11(9), 714–718. [CrossRef] [PubMed] [Google Scholar]
  18. El-Saadi MI, Brzezinski K, Hinz A, Phillips L, Wong A, Gerber L, Overgaard J, MacMillan HA. 2023. Locust gut epithelia do not become more permeable to fluorescent dextran and bacteria in the cold. Journal of Experimental Biology, 226(16), jeb246306. [CrossRef] [PubMed] [Google Scholar]
  19. Enriquez T, Colinet H. 2019. Cold acclimation triggers major transcriptional changes in Drosophila suzukii. BMC Genomics, 20(1), 413. [CrossRef] [PubMed] [Google Scholar]
  20. Ferguson LV, Kortet R, Sinclair BJ. 2018. Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. Journal of Experimental Biology, 221(13), jeb163873. [CrossRef] [PubMed] [Google Scholar]
  21. Fernandes ÉKK, Rangel DEN, Moraes ÁML, Bittencourt VREP, Roberts DW. 2008. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, 98(1), 69–78. [CrossRef] [PubMed] [Google Scholar]
  22. Freitak D, Ots I, Vanatoa A, Hörak P. 2003. Immune response is energetically costly in white cabbage butterfly pupae. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(2), S220–S222. [Google Scholar]
  23. French SS, Denise Dearing M, Demas GE. 2011. Leptin as a physiological mediator of energetic trade-offs in ecoimmunology: implications for disease. Integrative and Comparative Biology, 51(4), 505–513. [CrossRef] [PubMed] [Google Scholar]
  24. Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D. 2003. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science, 302(5653), 2126–2130. [CrossRef] [PubMed] [Google Scholar]
  25. Goto SG, Udaka H, Ueda C, Katagiri C. 2010. Fatty acids of membrane phospholipids in Drosophila melanogaster lines showing rapid and slow recovery from chill coma. Biochemical and Biophysical Research Communications, 391(2), 1251–1254. [CrossRef] [PubMed] [Google Scholar]
  26. Gruntenko NE, Karpova EK, Babenko VN, Vasiliev GV, Andreenkova OV, Bobrovskikh MA, Menshanov PN, Babenko RO, Rauschenbach IY. 2021. Fitness analysis and transcriptome profiling following repeated mild heat stress of varying frequency in Drosophila melanogaster females. Biology, 10(12), 1323. [CrossRef] [PubMed] [Google Scholar]
  27. Hoffmann JA, Reichhart J-M, Hetru C. 1996. Innate immunity in higher insects. Current Opinion in Immunology, 8(1), 8–13. [CrossRef] [PubMed] [Google Scholar]
  28. Inglis GD, Johnson DL, Goettel MS. 1996. Effects of temperature and thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biological Control, 7(2), 131–139. [CrossRef] [Google Scholar]
  29. Inglis GD, Johnson DL, Goettel MS. 1997. Effects of temperature and sunlight on mycosis (Beauveria bassiana) (Hyphomycetes: Sympodulosporae) of grasshoppers under field conditions. Environmental Entomology, 26(2), 400–409. [CrossRef] [Google Scholar]
  30. Kimura MT, Ohtsu T, Yoshida T, Awasaki T, Lin FJ. 1994. Climatic adaptations and distributions in the Drosophila takahashii species subgroup (Diptera: Drosophilidae). Journal of Natural History, 28(2), 401–409. [CrossRef] [Google Scholar]
  31. Krams I, Daukšte J, Kivleniece I, Krama T, Rantala MJ. 2011. Overwinter survival depends on immune defence and body length in male Aquarius najas water striders. Entomologia Experimentalis et Applicata, 140(1), 45–51. [CrossRef] [Google Scholar]
  32. Kryukov V, Yaroslavtseva O, Elisaphenko E, Mitkovets P, Lednev G, Duisembekov B, Zakian S, Glupov V. 2012. Change in the temperature preferences of Beauveria bassiana sensu lato isolates in the latitude gradient of Siberia and Kazakhstan. Microbiology, 81(4), 453–459. [CrossRef] [Google Scholar]
  33. Lazzaro BP, Flores HA, Lorigan JG, Yourth CP. 2008. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathogens, 4(3), e1000025. [CrossRef] [PubMed] [Google Scholar]
  34. Le Bourg É. 2014. Limitations of log-rank tests for analysing longevity data in biogerontology. Biogerontology, 15, 401–405. [CrossRef] [PubMed] [Google Scholar]
  35. Le Bourg É. 2016. Life-time protection against severe heat stress by exposing young Drosophila melanogaster flies to a mild cold stress. Biogerontology, 17(2), 409–415. [CrossRef] [PubMed] [Google Scholar]
  36. Le Bourg É, Massou I, Gobert V. 2009. Cold stress increases resistance to fungal infection throughout life in Drosophila melanogaster. Biogerontology, 10(5), 613–625. [CrossRef] [PubMed] [Google Scholar]
  37. Lee RE, Damodaran K, Yi S-X, Lorigan GA. 2006. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology, 52(3), 459–463. [CrossRef] [PubMed] [Google Scholar]
  38. Lemaitre B, Reichhart J-M, Hoffmann JA. 1997. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences, 94(26), 14614–14619. [CrossRef] [PubMed] [Google Scholar]
  39. Li Y-J, Chen S-Y, Jørgensen LB, Overgaard J, Renault D, Colinet H, Ma C-S. 2023. Interspecific differences in thermal tolerance landscape explain aphid community abundance under climate change. Journal of Thermal Biology, 103583. [Google Scholar]
  40. Linderman JA, Chambers MC, Gupta AS, Schneider DS. 2012. Infection-related declines in chill coma recovery and negative geotaxis in Drosophila melanogaster. PLoS One, 7, e41907. [CrossRef] [PubMed] [Google Scholar]
  41. Macmillan HA, Ferguson LV, Nicolai A, Donini A, Staples JF, Sinclair BJ. 2014. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance. Journal of Experimental Biology, 218(3), 423–432. [Google Scholar]
  42. MacMillan HA, Nørgård M, MacLean HJ, Overgaard J, Williams CJA. 2017. A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2. Journal of Insect Physiology, 101, 97–106. [CrossRef] [PubMed] [Google Scholar]
  43. MacMillan HA, Sinclair BJ. 2011. Mechanisms underlying insect chill-coma. Journal of Insect Physiology, 57(1), 12–20. [CrossRef] [PubMed] [Google Scholar]
  44. Macmillan HA, Sinclair BJ. 2011. The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. Journal of Experimental Biology, 214(5), 726–734. [CrossRef] [PubMed] [Google Scholar]
  45. Macmillan HA, Walsh JP, Sinclair BJ. 2009. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Science, 16(3), 263–276. [CrossRef] [Google Scholar]
  46. Macmillan HA, Williams CM, Staples JF, Sinclair BJ. 2012. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proceedings of the National Academy of Sciences, 109(50), 20750–20755. [CrossRef] [PubMed] [Google Scholar]
  47. Mandrioli M. 2012. Someone like it hot? Effects of global warming on insect immunity and microbiota. Invertebrate Survival Journal, 9(1), 58–63. [Google Scholar]
  48. Manenti T, Loeschcke V, Sørensen JG. 2018. Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans. Journal of Insect Physiology, 104, 40–47. [CrossRef] [PubMed] [Google Scholar]
  49. Marshall KE, Sinclair BJ. 2011. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. Journal of Experimental Biology, 214(7), 1205–1212. [CrossRef] [PubMed] [Google Scholar]
  50. Matzinger P. 1998. An innate sense of danger. Seminars in Immunology, 10(5), 399–415. [CrossRef] [PubMed] [Google Scholar]
  51. Moskalev A, Zhikrivetskaya S, Krasnov G, Shaposhnikov M, Proshkina E, Borisoglebsky D, Danilov A, Peregudova D, Sharapova I, Dobrovolskaya E, Solovev I, Zemskaya N, Shilova L, Snezhkina A, Kudryavtseva A. 2015. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock. BMC Genomics, 16(S13), S8. [CrossRef] [PubMed] [Google Scholar]
  52. Murdock CC, Moller-Jacobs LL, Thomas MB. 2013. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 20132030. [CrossRef] [PubMed] [Google Scholar]
  53. Paparazzo F, Tellier A, Stephan W, Hutter S. 2015. Survival rate and transcriptional response upon infection with the generalist parasite Beauveria bassiana in a world-wide sample of Drosophila melanogaster. PLoS One, 10(7), e0132129. [CrossRef] [PubMed] [Google Scholar]
  54. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45–e45. [Google Scholar]
  55. Piggott JJ, Townsend CR, Matthaei CD. 2015. Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution, 5(7), 1538–1547. [CrossRef] [PubMed] [Google Scholar]
  56. R Core Team. 2023. R: A language and environment for statistical computing. Available from: [Google Scholar]
  57. Rodgers EM, Gomez Isaza DF. 2023. The mechanistic basis and adaptive significance of cross-tolerance: a “pre-adaptation” to a changing world? Journal of Experimental Biology, 226(11), jeb245644. [CrossRef] [PubMed] [Google Scholar]
  58. Rodgers EM, Todgham AE, Connon RE, Fangue NA. 2019. Stressor interactions in freshwater habitats: effects of cold water exposure and food limitation on early‐life growth and upper thermal tolerance in white sturgeon, Acipenser transmontanus. Freshwater Biology, 64(2), 348–358. [CrossRef] [Google Scholar]
  59. Salehipour-Shirazi G, Ferguson LV, Sinclair BJ. 2017. Does cold activate the Drosophila melanogaster immune system? Journal of Insect Physiology, 96, 29–34. [CrossRef] [PubMed] [Google Scholar]
  60. Shahrestani P, Chambers M, Vandenberg J, Garcia K, Malaret G, Chowdhury P, Estrella Y, Zhu M, Lazzaro BP. 2018. Sexual dimorphism in Drosophila melanogaster survival of Beauveria bassiana infection depends on core immune signaling. Scientific Reports, 8(1), 12501. [CrossRef] [PubMed] [Google Scholar]
  61. Sinclair BJ, Coello Alvarado LE, Ferguson LV. 2015. An invitation to measure insect cold tolerance: methods, approaches, and workflow. Journal of Thermal Biology, 53, 180–197. [CrossRef] [PubMed] [Google Scholar]
  62. Sinclair BJ, Ferguson LV, Salehipour-Shirazi G, Macmillan HA. 2013. Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integrative and Comparative Biology, 53(4), 545–556. [CrossRef] [PubMed] [Google Scholar]
  63. Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS. 2016. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife, 5, e19662. [CrossRef] [PubMed] [Google Scholar]
  64. Steenberg T, Langer V, Esbjerg P. 1995. Entomopathogenic fungi in predatory beetles (Col.: Carabidae and Staphylinidae) from agricultural fields. Entomophaga, 40, 77–85. [CrossRef] [Google Scholar]
  65. Steinberg CE. 2012. Stress ecology: environmental stress as ecological driving force and key player in evolution. Dordrecht: Springer Science & Business Media. [Google Scholar]
  66. Štětina T, Poupardin R, Moos M, Šimek P, Šmilauer P, Koštál V. 2019. Larvae of Drosophila melanogaster exhibit transcriptional activation of immune response pathways and antimicrobial peptides during recovery from supercooling stress. Insect Biochemistry and Molecular Biology, 105, 60–68. [CrossRef] [PubMed] [Google Scholar]
  67. Stevenson RD. 1985. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. American Naturalist, 126(3), 362–386. [CrossRef] [Google Scholar]
  68. Sørensen JG, Kristensen TN, Overgaard J. 2016. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? Current Opinion in Insect Science, 17, 98–104. [CrossRef] [PubMed] [Google Scholar]
  69. Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. 2012. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics, 44(15), 764–777. [CrossRef] [PubMed] [Google Scholar]
  70. Thomas MB, Blanford S. 2003. Thermal biology in insect-parasite interactions. Trends in Ecology & Evolution, 18(7), 344–350. [CrossRef] [Google Scholar]
  71. Xie F, Xiao P, Chen D, Xu L, Zhang B. 2012. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80(1), 75–84. [CrossRef] [Google Scholar]
  72. Xu J, James RR. 2012. Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee, Megachile rotundata. Insect Molecular Biology, 21(2), 269–280. [CrossRef] [PubMed] [Google Scholar]
  73. Yi S-X, Moore CW, Lee RE. 2007. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis, 12(7), 1183–1193. [CrossRef] [PubMed] [Google Scholar]
  74. Zachariassen KE. 1985. Physiology of cold tolerance in insects. Physiological Reviews, 65(4), 799–832. [CrossRef] [PubMed] [Google Scholar]
  75. Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ. 2011. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. Journal of Experimental Biology, 214(23), 4021–4029. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.