Open Access
Issue
Parasite
Volume 30, 2023
Article Number 59
Number of page(s) 11
DOI https://doi.org/10.1051/parasite/2023061
Published online 12 December 2023
  1. Asch HL. 1972. Rhythmic emergence of Schistosoma mansoni cercariae from Biomphalaria glabrata: control by illumination. Experimental Parasitology, 31(3), 350–355. [CrossRef] [PubMed] [Google Scholar]
  2. Attwood SW, Upatham ES, Meng XH, Qiu DC, Southgate VR. 2002. The phylogeography of Asian Schistosoma (Trematoda: Schistosomatidae). Parasitology, 125(Pt 2), 99–112. [CrossRef] [PubMed] [Google Scholar]
  3. Brattig NW, Bergquist R, Qian MB, Zhou XN, Utzinger J. 2020. Helminthiases in the People’s Republic of China: Status and prospects. Acta Tropica, 212, 105670. [CrossRef] [PubMed] [Google Scholar]
  4. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. [CrossRef] [PubMed] [Google Scholar]
  5. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6(2), 80–92. [CrossRef] [PubMed] [Google Scholar]
  6. Colley DG, Bustinduy AL, Secor WE, King CH. 2014. Human schistosomiasis. Lancet, 383(9936), 2253–2264. [CrossRef] [PubMed] [Google Scholar]
  7. Combes C, Fournier A, Moné H, Théron A. 1994. Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes. Parasitology, 109(Suppl), S3–S13. [CrossRef] [PubMed] [Google Scholar]
  8. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R. 2011. The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. [CrossRef] [PubMed] [Google Scholar]
  9. Davis GM, Wu WP, Xu XJ. 2006. Ecogenetics of shell sculpture in Oncomelania (Gastropoda) in canals of Hubei, China, and relevance for schistosome transmission. Malacologia, 48(1–2), 253–264. [Google Scholar]
  10. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. [CrossRef] [PubMed] [Google Scholar]
  11. Drummond MG, Calzavara-Silva CE, D’Astolfo DS, Cardoso FC, Rajão MA, Mourão MM, Gava E, Oliveira SC, Macedo AM, Machado CR, Pena SD, Kitten GT, Franco GR. 2009. Molecular characterization of the Schistosoma mansoni zinc finger protein SmZF1 as a transcription factor. PLoS Neglected Tropical Diseases, 3(11), e547. [CrossRef] [PubMed] [Google Scholar]
  12. Ebert D, Fields PD. 2020. Host-parasite co-evolution and its genomic signature. Nature Reviews Genetics, 21(12), 754–768. [CrossRef] [PubMed] [Google Scholar]
  13. Eleutério de Souza PR, Valadão AF, Calzavara-Silva CE, Franco GR, de Morais MA, Jr., Abath FG. 2001. Cloning and characterization of SmZF1, a gene encoding a Schistosoma mansoni zinc finger protein. Mémorias do Instituto Oswaldo Cruz, 96(Suppl), 123–130. [Google Scholar]
  14. Favre T, Bogéa T, Rotenberg L, Silva H, Pieri O. 1997. Circadian rhythms in the cercarial emergence of Schistosoma mansoni by Biomphalaria tenagophila at outdoors: a comparative study with Biomphalaria glabrata. Biological Rhythm Research, 28(3), 348–357. [CrossRef] [Google Scholar]
  15. Gu JL, Chen SX, Dou TH, Xu MJ, Xu JX, Zhang L, Hu W, Wang SY, Zhou Y. 2012. Hox genes from the parasitic flatworm Schistosoma japonicum . Genomics, 99(1), 59–65. [CrossRef] [PubMed] [Google Scholar]
  16. Guo JY, Xu J, Zhang LJ, Lv S, Cao CL, Li SZ, Zhou XN. 2020. Surveillance on schistosomiasis in five provincial-level administrative divisions of the People’s Republic of China in the post-elimination era. Infectious Diseases of Poverty, 9(1), 136. [CrossRef] [PubMed] [Google Scholar]
  17. Han ZG, Brindley PJ, Wang SY, Chen Z. 2009. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annual Review of Genomics and Human Genetics, 10, 211–240. [CrossRef] [PubMed] [Google Scholar]
  18. He Y-X. 1993. Studies on the strain differences of Schistosoma japonicum in the mainland of China XII. Conclusion. Chinese Journal of Parasitology and Parasitic Diseases, 11(2), 93–97. [Google Scholar]
  19. He YX, Salafsky B, Ramaswamy K. 2001. Host–parasite relationships of Schistosoma japonicum in mammalian hosts. Trends in Parasitology, 17(7), 320–324. [CrossRef] [PubMed] [Google Scholar]
  20. Hoffmann KF, Davis EM, Fischer ER, Wynn TA. 2001. The guanine protein coupled receptor rhodopsin is developmentally regulated in the free-living stages of Schistosoma mansoni. Molecular and Biochemical Parasitology, 112(1), 113–123. [CrossRef] [PubMed] [Google Scholar]
  21. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. 2013. The next-generation sequencing revolution and its impact on genomics. Cell, 155(1), 27–38. [CrossRef] [PubMed] [Google Scholar]
  22. Kofler R, Pandey RV, Schlötterer C. 2011. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 27(24), 3435–3436. [CrossRef] [PubMed] [Google Scholar]
  23. Jiao-Jiao L. 2019. Endemic status and control of animal schistosomiasis in China. Chinese Journal of Schistosomiasis Control, 31(1), 40–46. [Google Scholar]
  24. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. [CrossRef] [PubMed] [Google Scholar]
  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. [CrossRef] [PubMed] [Google Scholar]
  26. Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J, Zhang J, Jiang A, Li J, Zhou C, Zhang J, Liu Y, Sun X, Zhao H, Niu Z, Lou P, Xian L, Shen X, Liu S, Zhang S, Zhang M, Zhu L, Shuai S, Bai L, Tang G, Liu H, Jiang Y, Mai M, Xiao J, Wang X, Zhou Q, Wang Z, Stothard P, Xue M, Gao X, Luo Z, Gu Y, Zhu H, Hu X, Zhao Y, Plastow GS, Wang J, Jiang Z, Li K, Li N, Li X, Li R. 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 45(12), 1431–1438. [CrossRef] [PubMed] [Google Scholar]
  27. Lu DB, Rudge JW, Wang TP, Donnelly CA, Fang GR, Webster JP. 2010. Transmission of Schistosoma japonicum in marshland and hilly regions of China: parasite population genetic and sibship structure. PLoS Neglected Tropical Diseases, 4(8), e781. [CrossRef] [PubMed] [Google Scholar]
  28. Lu DB, Wang TP, Rudge JW, Donnelly CA, Fang GR, Webster JP. 2009. Evolution in a multi-host parasite: chronobiological circadian rhythm and population genetics of Schistosoma japonicum cercariae indicates contrasting definitive host reservoirs by habitat. International Journal for Parasitology, 39(14), 1581–1588. [CrossRef] [PubMed] [Google Scholar]
  29. Luo F, Yin M, Mo X, Sun C, Wu Q, Zhu B, Xiang M, Wang J, Wang Y, Li J, Zhang T, Xu B, Zheng H, Feng Z, Hu W. 2019. An improved genome assembly of the fluke Schistosoma japonicum . PLoS Neglected Tropical Diseases, 13(8), e0007612. [CrossRef] [PubMed] [Google Scholar]
  30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303. [CrossRef] [PubMed] [Google Scholar]
  31. Mouahid G, Idris MA, Verneau O, Théron A, Shaban MM, Moné H. 2012. A new chronotype of Schistosoma mansoni: adaptive significance. Tropical Medicine & International Health, 17(6), 727–732. [CrossRef] [PubMed] [Google Scholar]
  32. Mouahid G, Mintsa Nguema R, Al Mashikhi KM, Al Yafae SA, Idris MA, Moné H. 2019. Host-parasite life-histories of the diurnal vs. nocturnal chronotypes of Schistosoma mansoni: adaptive significance. Tropical Medicine & International Health, 24(6), 692–700. [CrossRef] [PubMed] [Google Scholar]
  33. N’Goran E, Brémond P, Sellin E, Sellin B, Théron A. 1997. Intraspecific diversity of Schistosoma haematobium in west Africa: chronobiology of cercarial emergence. Acta Tropica, 66(1), 35–44. [CrossRef] [PubMed] [Google Scholar]
  34. Padalino G, Ferla S, Brancale A, Chalmers IW, Hoffmann KF. 2018. Combining bioinformatics, cheminformatics, functional genomics and whole organism approaches for identifying epigenetic drug targets in Schistosoma mansoni . International Journal for Parasitology: Drugs and Drug Resistance, 8(3), 559–570. [CrossRef] [Google Scholar]
  35. Pages JR, Théron A. 1990. Analysis and comparison of cercarial emergence rhythms of Schistosoma haematobium, S. intercalatum, S. bovis, and their hybrid progeny. International Journal for Parasitology, 20(2), 193–197. [CrossRef] [PubMed] [Google Scholar]
  36. Rudge JW, Lu DB, Fang GR, Wang TP, Basáñez MG, Webster JP. 2009. Parasite genetic differentiation by habitat type and host species: molecular epidemiology of Schistosoma japonicum in hilly and marshland areas of Anhui Province. China. Molecular Ecology, 18(10), 2134–2147. [CrossRef] [PubMed] [Google Scholar]
  37. Rudge JW, Webster JP, Lu DB, Wang TP, Fang GR, Basáñez MG. 2013. Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proceedings of the National Academy of Sciences, 110(28), 11457–11462. [CrossRef] [PubMed] [Google Scholar]
  38. Slifer SH. 2018. PLINK: key functions for data analysis. Current Protocols in Human Genetics, 97(1), e59. [CrossRef] [PubMed] [Google Scholar]
  39. Su J, Zhou F, Lu DB. 2013. A circular analysis of chronobiology of Schistosoma japonicum cercarial emergence from hilly areas of Anhui, China. Experimental Parasitology, 135(2), 421–425. [CrossRef] [PubMed] [Google Scholar]
  40. The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium. 2009. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature, 460(7253), 345–351. [CrossRef] [PubMed] [Google Scholar]
  41. Théron A. 1984. Early and late shedding patterns of Schistosoma mansoni cercariae: ecological significance in transmission to human and murine hosts. Journal of Parasitology, 70(5), 652–655. [CrossRef] [Google Scholar]
  42. Théron A, Combes C. 1988. Genetic analysis of cercarial emergence rhythms of Schistosoma mansoni. Behavioral Genetics, 18(2), 201–209. [CrossRef] [PubMed] [Google Scholar]
  43. Théron A, Combes C. 1995. Asynchrony of infection timing, habitat preference, and sympatric speciation of schistosome parasites. Evolution, 49(2), 372–375. [CrossRef] [Google Scholar]
  44. Verjovski-Almeida S, DeMarco R, Martins EA, Guimarães PE, Ojopi EP, Paquola AC, Piazza JP, Nishiyama MY Jr, Kitajima JP, Adamson RE, Ashton PD, Bonaldo MF, Coulson PS, Dillon GP, Farias LP, Gregorio SP, Ho PL, Leite RA, Malaquias LC, Marques RC, Miyasato PA, Nascimento AL, Ohlweiler FP, Reis EM, Ribeiro MA, Sá RG, Stukart GC, Soares MB, Gargioni C, Kawano T, Rodrigues V, Madeira AM, Wilson RA, Menck CF, Setubal JC, Leite LC, Dias-Neto E. 2003. Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics, 35(2), 148–157. [CrossRef] [PubMed] [Google Scholar]
  45. Wang LD, Chen HG, Guo JG, Zeng XJ, Hong XL, Xiong JJ, Wu XH, Wang XH, Wang LY, Xia G, Hao Y, Chin DP, Zhou XN. 2009. A strategy to control transmission of Schistosoma japonicum in China. New England Journal of Medicine, 360(2), 121–128. [CrossRef] [PubMed] [Google Scholar]
  46. Wang X, Xu X, Lu X, Zhang Y, Pan W. 2015. Transcriptome bioinformatical analysis of vertebrate stages of Schistosoma japonicum reveals alternative splicing events. PLoS One, 10(9), e0138470. [CrossRef] [PubMed] [Google Scholar]
  47. Whitfield PJ, Bartlett A, Khammo N, Clothier RH. 2003. Age-dependent survival and infectivity of Schistosoma mansoni cercariae. Parasitology, 127(Pt 1), 29–35. [CrossRef] [PubMed] [Google Scholar]
  48. Wilke T, Davis GM, Cui EC, Xiao-Nung Z, Xiao Peng Z, Yi Z, Spolsky CM. 2000. Oncomelania hupensis (Gastropoda: rissooidea) in eastern China: molecular phylogeny, population structure, and ecology. Acta Tropica, 77(2), 215–227. [CrossRef] [PubMed] [Google Scholar]
  49. Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics, 16(5), 284–287. [CrossRef] [PubMed] [Google Scholar]
  50. Zhang BB, Cai WM, Tao J, Zheng M, Liu RH. 2013. Expression of Smad proteins in the process of liver fibrosis in mice infected with Schistosoma japonicum. Chinese Journal of Parasitology & Parasitic Disease, 31(2), 89–94. [Google Scholar]
  51. Zhao QP, Jiang MS, Dong HF, Nie P. 2012. Diversification of Schistosoma japonicum in Mainland China revealed by mitochondrial DNA. PLoS Neglected Tropical Diseases, 6(2), e1503. [CrossRef] [PubMed] [Google Scholar]
  52. Zhou XN, Guo JG, Wu XH, Jiang QW, Zheng J, Dang H, Wang XH, Xu J, Zhu HQ, Wu GL, Li YS, Xu XJ, Chen HG, Wang TP, Zhu YC, Qiu DC, Dong XQ, Zhao GM, Zhang SJ, Zhao NQ, Xia G, Wang LY, Zhang SQ, Lin DD, Chen MG, Hao Y. 2007. Epidemiology of schistosomiasis in the People’s Republic of China, 2004. Emerging Infectious Diseases, 13(10), 1470–1476. [CrossRef] [PubMed] [Google Scholar]
  53. Zou HY, Yu QF, Qiu C, Webster JP, Lu DB. 2020. Meta-analyses of Schistosoma japonicum infections in wild rodents across China over time indicates a potential challenge to the 2030 elimination targets. PLoS Neglected Tropical Diseases, 14(9), e0008652. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.