Open Access
Issue
Parasite
Volume 30, 2023
Article Number 57
Number of page(s) 10
DOI https://doi.org/10.1051/parasite/2023062
Published online 12 December 2023
  1. Austin AD, Field SA. 1997. The ovipositor system of scelionid and platygastrid wasps (Hymenoptera: Platygastroidea): comparative morphology and phylogenetic implications. Invertebrate Taxonomy, 11, 1–88. [CrossRef] [Google Scholar]
  2. Belokobylskij SA, Maeto K. 2009. Doryctinae (Hymenoptera, Braconidae) of Japan. Fauna mundi 1. Warszawska Drukarnia Naukowa: Warszawa. p. 806. [Google Scholar]
  3. Boivin G. 2010. Reproduction and immature development of egg parasitoids, in Egg parasitoids in agroecosystems with emphasis on Trichogramma, vol. 9, Consoli FL, Parra JR, Zucchi RA, Editors. Springer Science & Business Media. p. 1–23. [Google Scholar]
  4. Brabbs T, Collins D, Herard F, Maspero M, Eyre D. 2015. Prospects for the use of biological control agents against Anoplophora in Europe. Pest Management Science, 71(1), 7–14. [CrossRef] [PubMed] [Google Scholar]
  5. Bracano S, Faccoli M, Brockerhoff EG, Roux G, Jactel H, Desneux N, Gachet E, Mouttet R, Streito J-C, Branco M. 2021. Preventing invasions of Asian longhorn beetle and citrus longhorn beetle: are we on the right track? Journal of Pest Science, 95, 41–66. [Google Scholar]
  6. Chen H, Lahey Z, Talamas EJ, Valerio AA, Popovici OA, Musetti L, Klompen H, Polaszek A, Masner L, Austin AD, Johnson NF. 2021. An integrated phylogenetic reassessment of the parasitoid superfamily Platygastroidea (Hymenoptera: Proctotrupomorpha) results in a revised familial classification. Systematic Entomology, 46(4), 1088–1113. [CrossRef] [Google Scholar]
  7. Clausen CP. 1940. Entomophagous insects. McGraw-Hill. [Google Scholar]
  8. Copland MJW, King PE. 1971. Structure of the female reproductive system in the Chalcididae (Hymenoptera). Entomologist’s Monthly Magazine, 107(1289–1291), 230–239. [Google Scholar]
  9. Copland MJW, King PE. 1972a. The structure of the female reproductive system in the Eurytomidae (Chalcidoidea: Hymenoptera). Journal of Zoology, 166, 185–212. [CrossRef] [Google Scholar]
  10. Copland MJW, King PE. 1972b. The structure of the female reproductive system in the Pteromalidae (Chalcidoidea: Hymenoptera). Entomologist, 105, 77–96. [Google Scholar]
  11. Cruaud A, Rasplus J-Y, Zhang J, Burks R, Delvare G, Fusu L, Gumovsky A, Huber JT, Janšta P, Mitroiu M-D, Noyes JS, van Noort S, Baker A, Böhmová J, Baur H, Blaimer BB, Brady SG, Bubeníková K, Chartois M, Copeland RS, Dale-Skey Papilloud N, Dal Molin A, Dominguez C, Gebiola M, Guerrieri E, Kresslein RL, Krogmann L, Lemmon E, Murray EA, Nidelet S, Nieves-Aldrey JL, Perry RK, Peters RS, Polaszek A, Sauné L, Torréns J, Triapitsyn S, Tselikh EV, Yoder M, Lemmon AR, Woolley JB, Heraty JM. 2023. The Chalcidoidea bush of life: evolutionary history of a massive radiation of minute wasps. Cladistics. https://doi.org/10.1111/cla.12561. [Google Scholar]
  12. Csader M, Mayer K, Betz O, Fischer S, Eggs B. 2021. Ovipositor of the braconid wasp Habrobracon hebetor: structural and functional aspects. Journal of Hymenoptera Research, 83, 73–99. [CrossRef] [Google Scholar]
  13. Duan JJ, Aparicio E, Tatman D, Smith MT, Luster DG. 2016. Potential new associations of North American parasitoids with the invasive Asian longhorned beetle (Coleoptera: Cerambycidae) for biological control. Journal of Economic Entomology, 109(2), 699–704. [CrossRef] [PubMed] [Google Scholar]
  14. Eggs B, Birkhold AI, Röhrle O, Betz O. 2018. Structure and function of the musculoskeletal ovipositor system of an ichneumonid wasp. BMC Zoology, 3, 1–12. [CrossRef] [Google Scholar]
  15. Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M. 2008. Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 19(3), 677–689. [CrossRef] [Google Scholar]
  16. Gima L. 2013. Contributions to the knowledge of research on beetle parasite fauna (insects). Note 1. Muzeul Olteniei Craiova. Oltenia, Studii si comunicari, Stiintele Naturii, 29(2), 172–183. [Google Scholar]
  17. Golec JR, Aparicio E, Wang X, Duan JJ, Fuester RW, Tatman D, Kula RR. 2020. Cerambycid communities and their associated hymenopteran parasitoids from major hardwood trees in Delaware, USA: implications for biocontrol of invasive longhorned beetles. Environmental Entomology, 49(2), 370–382. [CrossRef] [PubMed] [Google Scholar]
  18. Golec JR, Li F, Cao L, Wang X, Duan JJ. 2018. Mortality factors of Anoplophora glabripennis (Coleoptera: Cerambycidae) infesting Salix and Populus in central, northwest, and northeast China. Biological Control, 126, 198–208. [CrossRef] [Google Scholar]
  19. Gomez JF, Luis NAJ. 2017. Terminal–instar larval morphology and systematics of Eulophidae and Eupelmidae species (Hymenoptera, Chalcidoidea) parasitoids of gall wasps (Hymenoptera, Cynipidae) communities from Europe. Insect Systematics & Evolution, 48(3), 257–284. [CrossRef] [Google Scholar]
  20. Gómez JF, Nieves-Aldrey JL. 2012. Notes on the larval morphology of Pteromalidae (Hymenoptera: Chalcidoidea) species parasitoids of gall wasps (Hymenoptera: Cynipidae) in Europe. Zootaxa, 3189, 39–55. [CrossRef] [Google Scholar]
  21. Gould JR, Aflague B, Murphy TC, McCartin L, Elkinton JS, Rim K, Duan JJ. 2018. Collecting nontarget wood-boring insects for host-specificity testing of natural enemies of Cerambycids: a case study of Dastarcus helophoroides (Coleoptera: Bothrideridae), a parasitoid of the Asian longhorned beetle (Coleoptera: Cerambycidae). Environmental Entomology, 47, 1440–1450. [PubMed] [Google Scholar]
  22. Haack RA, Hérard F, Sun J, Turgeon JJ. 2010. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annual Review of Entomology, 55, 521–546. [CrossRef] [PubMed] [Google Scholar]
  23. Haack RA, Law KR, Mastro VC, Ossenburgen HS, Raimo BJ. 1997. New York’s battle with the Asian long-horned beetle. Journal of Forestry, 95(12), 11–15. [Google Scholar]
  24. Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321. [Google Scholar]
  25. Hilker M, Meiners T. 2010. How do plants “notice” attack by herbivorous arthropods? Biological Reviews, 85, 267–280. [CrossRef] [PubMed] [Google Scholar]
  26. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Natutre Methods, 14, 587–589. [CrossRef] [PubMed] [Google Scholar]
  27. Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. [Google Scholar]
  28. Kim M-S, Kim CJ, Herard F, Williams DW, Kim IK, Hong KJ. 2018. Discovery of Leluthia honshuensis Belokobylskij & Maeto (Hymenoptera: Braconidae) as a larval ectoparasitoid of the Asian longhorned beetle in South Korea. Journal of Asia-Pacific Biodiversity, 11(1), 132–137. [CrossRef] [Google Scholar]
  29. Kim M-S, Lee H-L, Ku D-S, Herard F, Gould JR, Williams DW, Kim I-K, Hong K-J. 2016. Discovery of Spathius ibarakius Belokobylskij & Maeto (Hymenoptera: Braconidae) as a larval ectoparasitoid of citrus longhorned beetle in Korea. Korean Journal of Applied Entomology, 55(3), 285–291. [CrossRef] [Google Scholar]
  30. King PE, Copland MJW. 1969. The structure of the female reproductive system in the Mymaridae (Chalcidoidea: Hymenoptera). Journal of Natural History, 3(3), 349–365. [CrossRef] [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. [CrossRef] [PubMed] [Google Scholar]
  32. Lee H-P, Kim I-K, Lee K-S. 1999. Morphology and development of Tetrastichus sp. (Hymenoptera: Eulophidae), parasitizing fallwebworm pupae, Hyphantria cunea Drury (Lepidoptera: Arctiidae). Korean Journal of Biological Sciences, 3(4), 369–374. [CrossRef] [Google Scholar]
  33. Lee S, Cha D, Nam Y, Jung J. 2021. Genetic diversity of a rising invasive pest in the native range: Population genetic structure of Aromia bungii (Coleoptera: Cerambycidae) in South Korea. Diversity, 13(11), 582. [CrossRef] [Google Scholar]
  34. Lee S, Choi J, Jang H, Choi W, Kwon W, Kim D, Gim J, Park J, Park S, Kim S, Shin S, Lee S. 2023. Establishment of non-native Anoplophora horsfieldii (Coleoptera: Cerambycidae) in South Korea. Journal of Integrated Pest Management, 14(1), 9. [CrossRef] [Google Scholar]
  35. Lee S, Lee Y, Lee S. 2020. Population genetic structure of Anoplophora glabripennis in South Korea: Invasive populations in the native range? Journal of Pest Science, 93(4), 1181–1196. [CrossRef] [Google Scholar]
  36. Li JQ, Wang SX, Yang Y, Huang DZ, Jin YJ, Bai Y. 2006. The study on oviposition, host recognition and discrimination behavior of Aprostocetus fukutai (Miwa & Sonan). Forest Science, 32, 447–452. [Google Scholar]
  37. Lupi D, Favaro R, Jucker C, Azevedo CO, Hardy ICW, Faccoli M. 2017. Reproductive biology of Sclerodermus brevicornis, a European parasitoid developing on three species of invasive longhorn beetles. Biological Control, 105, 40–48. [CrossRef] [Google Scholar]
  38. Masner L. 1993. Superfamily Platygastroidea, in Hymenoptera of the World: an identification guide to families. Goulet H, Huber J, Editors. Research Branch, Agriculture Canada: Ottawa, Canada. p. 537–557. [Google Scholar]
  39. Meyhöfer R, Casas J, Dorn S. 1997. Vibration-mediated interactions in a host-parasitoid system. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1379), 261–266. [CrossRef] [Google Scholar]
  40. Ng’endo RN, Osiemo ZB, Brandl R. 2013. DNA barcodes for species identification in the Hyperdiverse ant genus Pheidole (Formicidae: Myrmicinae). Journal of Insect Science, 13, 1–13. [CrossRef] [Google Scholar]
  41. Nowak DJ, Pasek JE, Sequeira RA, Crane DE, Mastro VC. 2001. Potential effect of Anoplophora glabripennis (Coleoptera: Cerambycidae) on urban trees in the United States. Journal of Economic Entomology, 94(1), 116–122. [CrossRef] [PubMed] [Google Scholar]
  42. Qin X-X, Gao R-T. 1988. Studies on bionomics and application of Dastarcus longulus Sharp. Entomological Knowledge, 25, 109–112 (in Chinese). [Google Scholar]
  43. Qiu H, Qiu Z, Shen B, Fu W. 1999. Host-preference plasticity studies with Trichogramma dendrolimi Westwood. Natural Enemies of Insects, 21(2), 49–54. [Google Scholar]
  44. Quicke DLJ. 2015. The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics Evolution and Ecology. Wiley-Blackwell: Oxford, UK. [Google Scholar]
  45. Rim R, Golec JR, Duan JJ. 2018. Host selection and potential non-target risk of Dastarcus helophoroides larval parasitoid of the Asian longhorned beetle, Anoplophora glabripennis . Biological Control, 123, 120–126. [CrossRef] [Google Scholar]
  46. Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A cross–platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE, 11(10), e0163962. [CrossRef] [PubMed] [Google Scholar]
  47. Sheng ML, Zhao RX, Sun SP. 2012. A new species of Xorides Latreille (Hymenoptera, Ichneumonidae, Xoridinae) parasitizing Pterolophia alternata (Coleoptera, Cerambycidae) in Robinia pseudoacacia . ZooKeys, 246, 39. [CrossRef] [Google Scholar]
  48. Shin S, Jung S, Heller K, Menzel F, Hong TK, Shin JS, Lee SH, Lee H, Lee S. 2015. DNA barcoding of Bradysia (Diptera: Sciaridae) for detection of the immature stages on agricultural crops. Journal of Applied Entomology, 139(8), 638–645. [CrossRef] [Google Scholar]
  49. Shin S, Jung S, Lee H, Lee S. 2013. Molecular identification of dipteran pests (Diptera: Sciaroidea) from shiitake mushroom. Molecular Ecology Resources, 13, 200–209. [CrossRef] [PubMed] [Google Scholar]
  50. Smith MT, Fuester RW, Tropp JM, Aparicio EM, Tatman D, Wildonger J. 2007. Natural enemies of native woodborers: Potential as biological control agents for the Asian longhorned beetle, in Proceedings, 18th US Department of Agriculture interagency research forum on gypsy moth and other invasive species 2007. Gottschalk KW, Editor. Annapolis, MD. p. 66–70. [Google Scholar]
  51. Sparks TC, Nauen R. 2015. IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122–128. [CrossRef] [PubMed] [Google Scholar]
  52. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. [PubMed] [Google Scholar]
  53. Stover NA, Cavalcanti AR. 2017. Using NCBI BLAST. Current Protocols Essential Laboratory Techniques, 14(1), 11.1.1–11.1.34. [CrossRef] [Google Scholar]
  54. Tang P, Belokobylskij S, Chen XX. 2015. Spathius Nees, 1818 (Hymenoptera: Braconidae, Doryctinae) from China with a key to species. Zootaxa, 3960, 1–132. [CrossRef] [PubMed] [Google Scholar]
  55. Van Whervin LW. 1968. The citrus weevils of Jamaica and some of their parasites. Citrus Research, the University of the West Indies. [Google Scholar]
  56. Wang X, Aparicio EM, Murphy TC, Duan JJ, Elkinton JS, Gould JR. 2019. Assessing the host range of the North American parasitoid Ontsira mellipes: potential for biological control of Asian longhorned beetle. Biological Control, 137, 104028. [CrossRef] [Google Scholar]
  57. Wang X, Wang XY, Kenis M, Cao L-M, Duan JJ, Gould JR, Hoelmer KA. 2021. Exploring the potential for novel associations of generalist parasitoids for biological control of invasive woodboring beetles. BioControl, 66, 97–112. [CrossRef] [Google Scholar]
  58. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. [CrossRef] [PubMed] [Google Scholar]
  59. Wei K, Li F, Tang Y, Cao L, Yang Z, Gould JR, Wang X-Y, Wang X. 2023. Exploration for native parasitoids of Asian longhorned beetle in China as prospective biological control agents. Agricultural and Forest Entomology, 12583, 1–11. [Google Scholar]
  60. Wu Y, Trepanowski NF, Molongoski JJ, Reagel PF, Lingafelter SW, Nadel H, Myers SW, Ray AM. 2017. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology. Scientific Reports, 7(1), 1–12. [CrossRef] [PubMed] [Google Scholar]
  61. Yang Z, Smith MT. 2001. Investigations of natural enemies for biocontrol of Anoplophora glabripennis (Motsch.), in Proceedings U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and other Invasive Species. Fosbroke SLC, Gottschalk KW, Editors. Annapolis, MD. p. 139–141. [Google Scholar]
  62. Yang ZQ, Cao LM, Zhang YL, Wang XY, Zhan MK. 2014. A new egg parasitoid species (Hymenoptera: Pteromalidae) of Monochamus alternatus (Coleoptera: Cerambycidae), with notes on its biology. Annals of the Entomological Society of America, 107(2), 407–412. [CrossRef] [Google Scholar]
  63. Zhang Y-L, Tang Y-L, Wang X-Y, Cao L-M, Yang Z-Q. 2020. Research progress on egg parasitoids of longicorn beetle and their prospect in biocontrol application. Forest Research, 33(4), 169–176 (in Chinese). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.