Open Access
Volume 30, 2023
Article Number 13
Number of page(s) 9
Published online 10 May 2023
  1. Atif FA. 2016. Alpha proteobacteria of genus Anaplasma (Rickettsiales: Anaplasmataceae): Epidemiology and characteristics of Anaplasma species related to veterinary and public health importance. Parasitology, 143, 659–685. [CrossRef] [PubMed] [Google Scholar]
  2. Azagi T, Dirks RP, Yebra-Pimentel ES, Schaap PJ, Koehorst JJ, Esser HJ, Sprong H. 2022. Assembly and comparison of Ca. Neoehrlichia mikurensis genomes, Microorganisms, 10, 1134. [CrossRef] [PubMed] [Google Scholar]
  3. Azagi T, Hoornstra D, Kremer K, Hovius JWR, Sprong H. 2020. Evaluation of disease causality of rare Ixodes ricinus-borne infections in Europe. Pathogens, 9, 150. [CrossRef] [PubMed] [Google Scholar]
  4. Banović P, Díaz-Sánchez AA, Simin V, Foucault-Simonin A, Galon C, Wu-Chuang A, Mijatović D, Obregón D, Moutailler S, Cabezas-Cruz A. 2022. Clinical aspects and detection of emerging rickettsial pathogens: A “One Health” approach study in Serbia, 2020. Frontiers in Microbiology, 12, 797399. [CrossRef] [PubMed] [Google Scholar]
  5. Binetruy F, Chevillon C, de Thoisy B, Garnier S, Duron O. 2019. Survey of ticks in French Guiana. Ticks and Tick-Borne Diseases, 10, 77–85. [CrossRef] [PubMed] [Google Scholar]
  6. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552. [PubMed] [Google Scholar]
  7. Caudill MT, Brayton KA. 2022. The use and limitations of the 16S rRNA sequence for species classification of Anaplasma samples. Microorganisms, 10, 605. [CrossRef] [PubMed] [Google Scholar]
  8. Couper LI, Yang Y, Yang XF, Swei A. 2020. Comparative vector competence of North American Lyme disease vectors. Parasites & Vectors, 2020(13), 29. [CrossRef] [PubMed] [Google Scholar]
  9. Dantas-Torres F, Chomel BB, Otranto D. 2012. Ticks and tick-borne diseases: A One Health perspective. Trends in Parasitology, 28, 437–446. [CrossRef] [PubMed] [Google Scholar]
  10. Darby AC, Cho NH, Fuxelius HH, Westberg J, Andersson SGE. 2007. Intracellular pathogens go extreme: Genome evolution in the Rickettsiales. Trends in Genetics, 23, 511–520. [CrossRef] [PubMed] [Google Scholar]
  11. Diniz PPVP, Moura de Aguiar D. 2022. Ehrlichiosis and anaplasmosis: An update. Veterinary Clinics: Small Animal Practice, 52, 1225–1266. [CrossRef] [Google Scholar]
  12. Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, Grab DJ, Bakken JS. 2005. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerging Infectious Diseases, 11, 1828–1834. [CrossRef] [PubMed] [Google Scholar]
  13. Duron O, Koual R, Musset L, Buysse M, Lambert Y, Jaulhac B, Blanchet D, Alsibai KD, Lazrek Y, Epelboin L, Deshuillers P, Michaud C, Douine M. 2022. Novel chronic anaplasmosis in splenectomized patient in Amazon rainforest. Emerging Infectious Diseases, 28, 1673–1676. [CrossRef] [PubMed] [Google Scholar]
  14. Eshoo MW, Carolan HE, Massire C, Chou DM, Crowder CD, Rounds MA, Phillipson CA, Schutzer SE, Ecker DJ. 2015. Survey of Ixodes pacificus ticks in California reveals a diversity of microorganisms and a novel and widespread anaplasmataceae species. PLoS One, 10, 1–14. [Google Scholar]
  15. Fallquist HM, Tao J, Cheng X, Pierlé SA, Broschat SL, Brayton KA. 2019. Dynamics of repeat-associated plasticity in the aaap gene family in Anaplasma marginale. Gene: X, 2, 100010. [PubMed] [Google Scholar]
  16. Friedman CS, Andree KB, Beauchamp KA, Moore JD, Robbins TT, Shields JD, Hedrick RP. 2000. “Candidatus Xenohaliotis californiensis”, a newly described pathogen of abalone, Haliotis spp., along the west coast of North America. International Journal of Systematic and Evolutionary Microbiology, 50 Pt 2, 847–855. [CrossRef] [PubMed] [Google Scholar]
  17. Herndon DR, Palmer GH, Shkap V, Knowles DP, Brayton KA. 2010. Complete genome sequence of Anaplasma marginale subsp. centrale. Journal of Bacteriology, 192, 379–380. [CrossRef] [PubMed] [Google Scholar]
  18. Ismail N, McBride JW. 2017. Tick-borne emerging infections: Ehrlichiosis and anaplasmosis. Clinics in Laboratory Medicine, 37, 317–340. [CrossRef] [PubMed] [Google Scholar]
  19. Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. 2021. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host & Microbe, 29, 879–893. [CrossRef] [PubMed] [Google Scholar]
  20. Kočíková B, Majláth I, Víchová B, Maliničová L, Pristaš P, Connors VA, Majláthová V. 2018. Candidatus Cryptoplasma associated with green lizards and Ixodes ricinus ticks, Slovakia, 2004–2011. Emerging Infectious Diseases, 24, 2348–2351. [CrossRef] [PubMed] [Google Scholar]
  21. Kwan JC, Schmidt EW. 2013. Bacterial endosymbiosis in a chordate host: Long-term co-evolution and conservation of secondary metabolism. PLOS One, 8, e80822. [Google Scholar]
  22. Lacroux C, Bonnet S, Pouydebat E, Buysse M, Rahola N, Rakotobe S, Okimat J-P, Koual R, Asalu E, Krief S, Duron O. 2023. Survey of ticks and tick-borne pathogens in wild chimpanzee habitat in Western Uganda. Parasites & Vectors, 16, 22. [CrossRef] [PubMed] [Google Scholar]
  23. Landmann F. 2019. The Wolbachia endosymbionts. Microbiology. Spectrum, 7, 7–2. [Google Scholar]
  24. Ledger KJ, Beati L, Wisely SM. 2021. Survey of ticks and tick-borne rickettsial and protozoan pthogens in Eswatini. Pathogens, 10, 1043. [CrossRef] [PubMed] [Google Scholar]
  25. Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Yin H, Brayton KA. 2019. The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics, 20, 69. [CrossRef] [PubMed] [Google Scholar]
  26. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. 2010. RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics, 26, 2462–2463. [CrossRef] [PubMed] [Google Scholar]
  27. Mendoza-Roldan JA, Ravindran Santhakumari Manoj R, Latrofa MS, Iatta R, Annoscia G, Lovreglio P, Stufano A, Dantas-Torres F, Davoust B, Laidoudi Y, Mediannikov O, Otranto D. 2021. Role of reptiles and associated arthropods in the epidemiology of rickettsioses: A one health paradigm. PLoS Neglected Tropical Diseases, 15, 1–17. [Google Scholar]
  28. Ogrzewalska M, Machado C, Rozental T, Forneas D, Cunha LE, de Lemos ERS. 2019. Microorganisms in the ticks Amblyomma dissimile Koch 1844 and Amblyomma rotundatum Koch 1844 collected from snakes in Brazil. Medical and Veterinary Entomology, 33, 154–161. [CrossRef] [PubMed] [Google Scholar]
  29. Oh JY, Moon BC, Bae BK, Shin EH, Ko YH, Kim YJ, Park YH, Chae JS. 2009. Genetic identification and phylogenetic analysis of Anaplasma and Ehrlichia species in Haemaphysalis longicornis collected from Jeju island, Korea. Journal of Bacteriology and Virology, 39, 257–267. [CrossRef] [Google Scholar]
  30. Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. 2020. Lists of names of prokaryotic Candidatus taxa. International Journal of Systematic and Evolutionary Microbiology, 70, 3956–4042. [CrossRef] [PubMed] [Google Scholar]
  31. Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA. 2018. “Candidatus Neoehrlichia mikurensis” in Europe. New Microbes and New Infections, 22, 30–36. [CrossRef] [PubMed] [Google Scholar]
  32. Qi Y, Ai L, Zhu C, Lu Y, Lv R, Mao Y, Lu N, Tan W. 2022. Co-existence of multiple Anaplasma species and variants in ticks feeding on hedgehogs or cattle poses potential threats of anaplasmosis to humans and livestock in eastern China. Frontiers in Microbiology, 13, 913650. [CrossRef] [PubMed] [Google Scholar]
  33. Rar V, Tkachev S, Tikunova N. 2021. Genetic diversity of Anaplasma bacteria: Twenty years later. Infection, Genetics and Evolution, 91, 104833. [CrossRef] [PubMed] [Google Scholar]
  34. Reis C, Cote M, Paul REL, Bonnet S. 2011. Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector-Borne and Zoonotic Diseases, 11, 907–916. [CrossRef] [PubMed] [Google Scholar]
  35. Rikihisa Y, Zhang C, Christensen BM. 2003. Molecular characterization of Aegyptianella pullorum (Rickettsiales, Anaplasmataceae). Journal of Clinical Microbiology, 41, 5294–5297. [CrossRef] [PubMed] [Google Scholar]
  36. Salje J. 2021. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nature Reviews. Microbiology, 19, 375–390. [Google Scholar]
  37. Sarih M, M’Ghirbi Y, Bouattour A, Gern L, Baranton G, Postic D. 2005. Detection and identification of Ehrlichia spp. in ticks collected in Tunisia and Morocco. Journal of Clinical Microbiology, 43, 1127–1132. [CrossRef] [PubMed] [Google Scholar]
  38. Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H. 2016. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Experimental & Applied Acarology, 68, 279–297. [CrossRef] [PubMed] [Google Scholar]
  39. Souza UA, Fagundes-Moreira R, Costa FB, Alievi MM, Labruna MB, Soares JF. 2022. Rickettsia amblyommatis-infected Amblyomma coelebs parasitizing a human traveler in Rio Grande do Sul, southern Brazil, after returning from the Amazon. Travel Medicine and Infectious Disease, 48, 102328. [CrossRef] [PubMed] [Google Scholar]
  40. Štefančíková A, Derdáková M, Lenčáková D, Ivanová R, Stanko M, Čisláková L, Peťko B. 2008. Serological and molecular detection of Borrelia burgdorferi sensu lato and Anaplasmataceae in rodents. Folia Microbiologica, 53, 493–499. [CrossRef] [PubMed] [Google Scholar]
  41. Uzal FA, Arroyo LG, Navarro MA, Gomez DE, Asín J, Henderson E. 2022. Bacterial and viral enterocolitis in horses: A review. Journal of Veterinary Diagnostic Investigation, 34, 354. [CrossRef] [PubMed] [Google Scholar]
  42. Vaughan JA, Tkach VV, Greiman SE. 2012. Neorickettsial endosymbionts of the Digenea: Diversity, transmission and distribution. Advances in Parasitology, 79, 253–297. [CrossRef] [PubMed] [Google Scholar]
  43. Zhao L, Li J, Cui X, Jia N, Wei J, Xia L, Wang H, Zhou Y, Wang Q, Liu X, Yin C, Pan Y, Wen H, Wang Q, Xue F, Sun Y, Jiang J, Li S, Cao W. 2020. Distribution of Haemaphysalis longicornis and associated pathogens: Analysis of pooled data from a China field survey and global published data. Lancet Planetary Health, 4, e320–e329. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.