Open Access
Volume 30, 2023
Article Number 5
Number of page(s) 8
Published online 10 February 2023
  1. Abdel-Malek AA, Tantawy AO, Wakid AM. 1967. Studies on the eradication of Anopheles pharoensis Theobald by the sterile-male technique using Cobalt-60. III. Determination of the sterile dose and its biological effects on different characters related to “fitness” components. Journal of Economic Entomology, 60, 20–23. [CrossRef] [PubMed] [Google Scholar]
  2. Alexander ML, Bergendahl J. 1964. Dose rate effects in the developing germ cells of male Drosophila. Genetics, 49, 1–16. [CrossRef] [PubMed] [Google Scholar]
  3. Baeshen R, Ekechukwu NE, Toure M, Paton D, Coulibaly M, Traoré SF, Tripet F. 2014. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malaria Journal, 13, 1–14. [CrossRef] [PubMed] [Google Scholar]
  4. Bolker B, R Development Core Team. 2020. bbmle: Tools for General Maximum Likelihood Estimation. R package version [Google Scholar]
  5. Brower JH. 1976. Dose fractionation: effects on longevity, mating capacity, and sterility of irradiated males of the Indian meal moth. Plodia interpunctella (Lepidoptera: Phycitidae). Canadian Entomologist, 108, 823–826. [CrossRef] [Google Scholar]
  6. Culbert NJ, Gilles JR, Bouyer J. 2019. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS One, 14, e0221822. [CrossRef] [PubMed] [Google Scholar]
  7. Culbert NJ, Lees RS, Vreysen MJ, Darby AC, Gilles JR. 2017. Optimised conditions for handling and transport of male Anopheles arabiensis: effects of low temperature, compaction, and ventilation on male quality. Entomologia Experimentalis et Applicata, 164, 276–283. [CrossRef] [Google Scholar]
  8. Culbert NJ, Maiga H, Somda NSB, Gilles JRL, Bouyer J, Mamai W. 2018. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasites & Vectors, 11, 603. [CrossRef] [PubMed] [Google Scholar]
  9. Diallo S, Seck MT, Rayaissé JB, Fall AG, Bassene MD, Sall B, Sanon A, Vreysen MJB, Takac P, Parker AG, Gimonneau G, Bouyer J. 2019. Chilling, irradiation and transport of male Glossina palpalis gambiensis pupae: effect on the emergence, flight ability and survival. PLoS ONE, 14, e0216802. [Google Scholar]
  10. Ducoff HS, Vaughan AP, Crossland JL. 1971. Dose-fractionation and the sterilization of radiosensitive male confused flour beetles. Journal of Economic Entomology, 64, 541–543. [CrossRef] [Google Scholar]
  11. Dyck VA, Hendrichs J, Robinson AS, Editors. 2021. Sterile insect technique: principles and practice in area-wide integrated pest management, 2nd edn. Boca Raton, FL: CRC Press. [Google Scholar]
  12. FAO/IAEA. 2017. Guidelines for routine colony maintenance of Aedes mosquito species. Version 1.0. [Google Scholar]
  13. FAO/IAEA. 2019. Guidelines for small scale Irradiation of mosquito pupae in SIT programs. 1.0. [Google Scholar]
  14. FAO/IAEA. 2020. Guidelines for mass rearing Aedes mosquitoes. Version 1.0. [Google Scholar]
  15. Feinendegen LE. 2005. Evidence for beneficial low level radiation effects and radiation hormesis. British Journal of Radiology, 78, 3–7. [CrossRef] [PubMed] [Google Scholar]
  16. Focks DA. 1980. An improved separator for the developmental stages, sexes, and species of mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 17, 567–568. [CrossRef] [PubMed] [Google Scholar]
  17. Haynes JW, Wright JE, Davich TB, Roberson J, Griffin JG, Darden E. 1978. Boll weevil: experimental sterilization of large numbers by fractionated irradiation. Journal of Economic Entomology, 71, 943–946. [CrossRef] [Google Scholar]
  18. Helinski MEH, Knols BGJ. 2008. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. Journal of Medical Entomology, 45, 698–705. [CrossRef] [PubMed] [Google Scholar]
  19. Helinski MEH, Parker AG, Knols BG. 2006. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malaria Journal, 5, 41. [CrossRef] [PubMed] [Google Scholar]
  20. IAEA. 2004. Dosimetry system for SIT: manual for Gafchromic® film. [Google Scholar]
  21. Jefferies DJ. 1966. Effects of continuous and fractionated doses of gamma radiation on the survival and fertility of Sitophilus granarius (L.), in The Entomology of Radiation Disinfestation of Grain. Peragmon. p. 41–56. [CrossRef] [Google Scholar]
  22. Johnson BJ, Mitchell SN, Paton CJ, Stevenson J, Staunton KM, Snoad N, Beebe N, White BJ, Ritchie SA. 2017. Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases. PLoS Neglected Tropical Diseases, 11, e0005902. [CrossRef] [PubMed] [Google Scholar]
  23. Knipling EF. 1959. Sterile-male method of population control. Science, 130, 902–904. [CrossRef] [PubMed] [Google Scholar]
  24. Knipling EF. 1979. The basic principles of insect population suppression and management. Washington, DC: United States Department of Agriculture. [Google Scholar]
  25. Kumano N, Kuriwada T, Shiromoto K, Haraguchi D, Kohama T. 2011. Fractionated irradiation improves the mating performance of the West Indian sweet potato weevil Euscepes postfasciatus. Agricultural and Forest Entomology, 13, 349–356. [CrossRef] [Google Scholar]
  26. Leonard A, Deknudt G. 1971. The rate of translocations induced in spermatogonia of mice by two x-irradiation exposures separated by varying time intervals. Radiation Research, 45, 72–79. [CrossRef] [PubMed] [Google Scholar]
  27. Li I, Mak KW, Wong J, Tan CH. 2021. Using the fluorescent dye, Rhodamine B, to study mating competitiveness in male Aedes aegypti mosquitoes. Journal of Visualized Experiments, 171, e62432. [Google Scholar]
  28. Liu N. 2015. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annual Review of Entomology, 60, 537–559. [CrossRef] [PubMed] [Google Scholar]
  29. Maïga H, Lu D, Mamai W, Bimbilé Somda NS, Wallner T, Bakhoum MT, Bueno Masso O, Martina C, Kotla SS, Yamada H. 2022. Standardization of the FAO/IAEA flight test for quality control of sterile mosquitoes. Frontiers in Bioengineering and Biotechnology, 10, 876675. [CrossRef] [PubMed] [Google Scholar]
  30. Mouatcho J, Munhenga G, Hargreaves K, Brooke BD, Coetzee M, Koekemoer LL. 2009. Pyrethroid resistance in a major African malaria vector Anopheles arabiensis from Mamfene, northern KwaZulu-Natal, South Africa. South African Journal of Science, 105, 127–131. [Google Scholar]
  31. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David J-P. 2017. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 11, e0005625. [CrossRef] [PubMed] [Google Scholar]
  32. Pimentel D, Pimentel M. 1979. The risks of pesticides. Natural History, 88, 24–30. [Google Scholar]
  33. Shantharam K, Tamhankar AJ, Rananavare HD. 2000. Effect of dose fractionation on male sterility and mating competitiveness of Earias vitella (Fabricius). Journal of Nuclear Agriculture and Biology, 29, 142–145. [Google Scholar]
  34. Soma DD, Maiga H, Mamai W, Bimbile-Somda NS, Venter N, Ali AB, Yamada H, Diabate A, Fournet F, Ouedraogo GA, Lees RS, Dabire RK, Gilles JRL. 2017. Does mosquito mass-rearing produce an inferior mosquito? Malaria Journal, 16, 357. [CrossRef] [PubMed] [Google Scholar]
  35. Vreysen MJB, Van der Vloedt AMV. 1995. Radiation sterilization of Glossina tachinoides Westw. pupae. I. The effect of dose fractionation and nitrogen during irradiation in the mid-pupal phase. Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 48, 45–51. [Google Scholar]
  36. Vreysen MJ, Abd-Alla AM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K. 2021. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten years (2010–2020) of research and development, achievements and challenges in support of the Sterile Insect Technique. Insects, 12, 346. [CrossRef] [PubMed] [Google Scholar]
  37. Wakid AM, Elbadry EA, Hosny MM, Sallam HA. 1972. Studies on the dose-fractionation, mating competitiveness and restoration of egg viability in the gamma-irradiated populations of the cotton leaf worm, Spodoptera littoralis Boisd. Zeitschrift Für Angewandte Entomologie, 72, 330–335. [Google Scholar]
  38. World Health Organization. 2012. Global plan for insecticide resistance management in malaria vectors: executive summary. [Google Scholar]
  39. Yamada H, Maiga H, Kraupa C, Mamai W, Bimbilé Somda NS, Abrahim A, Wallner T, Bouyer J. 2022. Effects of chilling and anoxia on the irradiation dose-response in adult Aedes mosquitoes. Frontiers in Bioengineering and Biotechnology, 10, 620 [Google Scholar]
  40. Yamada H, Parker AG, Oliva CF, Balestrino F, Gilles JRL. 2014. X-ray-induced sterility in Aedes albopictus and male longevity following irradiation. Journal of Medical Entomology, 51, 811–816. [CrossRef] [PubMed] [Google Scholar]
  41. Yamada H, Vreysen MJB, Gilles JRL, Munhenga G, Damiens DD. 2014. The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malaria Journal, 13, 318. [CrossRef] [PubMed] [Google Scholar]
  42. Zhang D, Xi Z, Li Y, Wang X, Yamada H, Qiu J, Liang Y, Zhang M, Wu Y, Zheng X. 2020. Toward implementation of combined incompatible and sterile insect techniques for mosquito control: Optimized chilling conditions for handling Aedes albopictus male adults prior to release. PLoS Neglected Tropical Diseases, 14, e0008561. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.