Open Access
Review
Issue
Parasite
Volume 30, 2023
Article Number 10
Number of page(s) 19
DOI https://doi.org/10.1051/parasite/2023011
Published online 31 March 2023
  1. Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. 2020. Peptides to combat viral infectious diseases. Peptides, 134, 170402. [CrossRef] [PubMed] [Google Scholar]
  2. Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE. 2018. Human leishmaniasis in Brazil: A general review. Revista Da Associação Médica Brasileira, 64, 281–289. [CrossRef] [PubMed] [Google Scholar]
  3. Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, Carvalho E, Ephros M, Jeronimo S, Magill A. 2017. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). American Journal of Tropical Medicine and Hygiene, 96, 24–45. [CrossRef] [PubMed] [Google Scholar]
  4. Azeredo-Coutinho RBG, Pimentel MI, Zanini GM, Madeira MF, Cataldo JI, Schubach AO, Quintella LP, de Mello CX, Mendonça SCF. 2016. Intestinal helminth coinfection is associated with mucosal lesions and poor response to therapy in American tegumentary leishmaniasis. Acta Tropica, 154, 42–49. [CrossRef] [PubMed] [Google Scholar]
  5. Bangert M, Flores-Chávez MD, Llanes-Acevedo IP, Arcones C, Chicharro C, García E, Ortega S, Nieto J, Cruz I. 2018. Validation of rK39 immunochromatographic test and direct agglutination test for the diagnosis of Mediterranean visceral leishmaniasis in Spain. PLOS Neglected Tropical Diseases, 12, e0006277. [CrossRef] [PubMed] [Google Scholar]
  6. Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. 2014. Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database of Systematic Reviews, 2014(6), CD009135. [Google Scholar]
  7. Bremer Hinckel BC, Marlais T, Airs S, Bhattacharyya T, Imamura H, Dujardin J-C, El-Safi S, Singh OP, Sundar S, Falconar AK, Andersson B, Litvinov S, Miles MA, Mertens P. 2019. Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLOS Neglected Tropical Diseases, 13, e0007353. [CrossRef] [PubMed] [Google Scholar]
  8. Burza S, Croft SL, Boelaert M. 2018. Leishmaniasis. Lancet, 392, 951–970. [CrossRef] [PubMed] [Google Scholar]
  9. Camussone C, Gonzalez V, Belluzo MS, Pujato N, Ribone ME, Lagier CM, Marcipar IS. 2009. Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. Clinical and Vaccine Immunology, 16, 899–905. [CrossRef] [PubMed] [Google Scholar]
  10. Carmelo E, Martínez E, González AC, Piñero JE, Patarroyo ME, del Castillo A, Valladares B. 2002. Antigenicity of Leishmania braziliensis histone H1 during cutaneous leishmaniasis: Localization of antigenic determinants. Clinical and Vaccine Immunology, 9, 808–811. [CrossRef] [Google Scholar]
  11. Carvalho AMRS, Mendes TA de O, Coelho EAF, Duarte MC, Menezes-Souza D. 2018. New antigens for the serological diagnosis of human visceral leishmaniasis identified by immunogenomic screening. PLoS One, 13, e0209599. [CrossRef] [PubMed] [Google Scholar]
  12. Centers for Disease Control and Prevention website. 2014. Practical guide for specimen collection and reference diagnosis of leishmaniasis. Atlanta, GA: CDC. [Google Scholar]
  13. Chávez-Fumagalli MA, Martins VT, Testasicca MCS, Lage DP, Costa LE, Lage PS, Duarte MC, Ker HG, Ribeiro TG, Carvalho FAA, Régis WCB, dos Reis AB, Tavares CAP, Soto M, Fernandes AP, Coelho EAF. 2013. Sensitive and specific serodiagnosis of Leishmania infantum infection in dogs by using peptides selected from hypothetical proteins identified by an immunoproteomic approach. Clinical and Vaccine Immunology, 20, 835–841. [CrossRef] [PubMed] [Google Scholar]
  14. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HCW, Bossuyt PMM. 2016. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open, 6, e012799. [CrossRef] [PubMed] [Google Scholar]
  15. Costa LE, Salles BCS, Alves PT, Dias ACS, Vaz ER, Ramos FF, Menezes-Souza D, Duarte MC, Roatt BM, Chávez-Fumagalli MA, Tavares CAP, Gonçalves DU, Rocha MOC, Goulart LR, Coelho EAF. 2016. New serological tools for improved diagnosis of human tegumentary leishmaniasis. Journal of Immunological Methods, 434, 39–45. [CrossRef] [PubMed] [Google Scholar]
  16. Costa LE, Salles BCS, Santos TTO, Ramos FF, Lima MP, Lima MIS, Portela ÁSB, Chávez-Fumagalli MA, Duarte MC, Menezes-Souza D, Machado-de-Ávila RA, Silveira JAG, Magalhães-Soares DF, Goulart LR, Coelho EAF. 2017. Antigenicity of phage clones and their synthetic peptides for the serodiagnosis of canine and human visceral leishmaniasis. Microbial Pathogenesis, 110, 14–22. [CrossRef] [PubMed] [Google Scholar]
  17. Costa MM, Penido M, dos Santos MS, Doro D, de Freitas E, Michalick MSM, Grimaldi G, Gazzinelli RT, Fernandes AP. 2012. Improved canine and human visceral leishmaniasis immunodiagnosis using combinations of synthetic peptides in enzyme-linked immunosorbent assay. PLoS Neglected Tropical Diseases, 6, e1622. [CrossRef] [PubMed] [Google Scholar]
  18. Cota ALP, Rabello A, Assis TSM, Oliveira E, Gomes LI, de Freitas Nogueira BM, de Sousa MR, Cota GF, Saliba JW, Pinto BF. 2013. Comparison of parasitological, serological, and molecular tests for visceral leishmaniasis in HIV-Infected Patients: A cross-sectional delayed-type study. American Journal of Tropical Medicine and Hygiene, 89, 570–577. [CrossRef] [PubMed] [Google Scholar]
  19. Cota GF, de Sousa MR, Demarqui FN, Rabello A. 2012. The diagnostic accuracy of serologic and molecular methods for detecting visceral leishmaniasis in HIV infected patients: Meta-analysis. PLoS Neglected Tropical Diseases, 6, e1665. [CrossRef] [PubMed] [Google Scholar]
  20. Cunningham J, Hasker E, Das P, El Safi S, Goto H, Mondal D, Mbuchi M, Mukhtar M, Rabello A, Rijal S, Sundar S, Wasunna M, Adams E, Menten J, Peeling R, Boelaert M, for the WHO, TDR Visceral Leishmaniasis Laboratory Network. 2012. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clinical Infectious Diseases, 55, 1312–1319. [CrossRef] [PubMed] [Google Scholar]
  21. Dubey P, Das A, Priyamvada K, Bindroo J, Mahapatra T, Mishra PK, Kumar A, Franco AO, Rooj B, Sinha B, Pradhan S, Banerjee I, Kumar M, Bano N, Kumar C, Prasad C, Chakraborty P, Kumar R, Kumar N, Kumar A, Singh AK, Kundan K, Babu S, Shah H, Karthick M, Roy N, Gill NK, Dwivedi S, Chaudhuri I, Hightower AW, Chapman LAC, Singh C, Sharma MP, Dhingra N, Bern C, Srikantiah S. 2021. Development and evaluation of active case detection methods to support visceral leishmaniasis elimination in India. Frontiers in Cellular and Infection Microbiology, 11, 648903. [CrossRef] [PubMed] [Google Scholar]
  22. Dubois ME, Hammarlund E, Slifka MK. 2012. Optimization of peptide-based ELISA for serological diagnostics: A retrospective study of human monkeypox infection. Vector-Borne and Zoonotic Diseases, 12, 400–409. [CrossRef] [PubMed] [Google Scholar]
  23. Elisei RMT, Matos CS, Carvalho AMRS, Chaves AT, Medeiros FAC, Barbosa R, Marcelino AP, Santos Emidio K dos, Coelho EAF, Duarte MC, Oliveira Mendes TA de, Costa Rocha MO da, Menezes-Souza D. 2018. Immunogenomic screening approach to identify new antigens for the serological diagnosis of chronic Chagas’ disease. Applied Microbiology and Biotechnology, 102, 6069–6080. [CrossRef] [PubMed] [Google Scholar]
  24. El-Manzalawy Y, Honavar V. 2010. Recent advances in B-cell epitope prediction methods. Immunome Research, 6, S2. [CrossRef] [PubMed] [Google Scholar]
  25. Frank FM, Fernández MM, Taranto NJ, Cajal SP, Margni RA, Castro E, Thomaz-Soccol V, Malchiodi EL. 2003. Characterization of human infection by Leishmania spp. in the Northwest of Argentina: immune response, double infection with Trypanosoma cruzi and species of Leishmania involved. Parasitology, 126, 31–39. [CrossRef] [PubMed] [Google Scholar]
  26. Galvani NC, Machado AS, Lage DP, Freitas CS, Vale DL, de Oliveira D, Ludolf F, Ramos FF, Fernandes BB, Luiz GP, Mendonça DVC, Oliveira-da-Silva JA, Reis TAR, Tavares GSV, Chaves AT, Guimarães NS, Tupinambás U, Cota GF, Humbert MV, Martins VT, Christodoulides M, Coelho EAF, Machado-de-Ávila RA. 2021. ChimLeish, a new recombinant chimeric protein evaluated as a diagnostic and prognostic marker for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology Research, 120, 4037–4047. [CrossRef] [PubMed] [Google Scholar]
  27. Galvani NC, Machado AS, Lage DP, Martins VT, de Oliveira D, Freitas CS, Vale DL, Fernandes BB, Oliveira-da-Silva JA, Reis TAR, Santos TTO, Ramos FF, Bandeira RS, Ludolf F, Tavares GSV, Guimarães NS, Tupinambás U, Chávez-Fumagalli MA, Humbert MV, Gonçalves DU, Christodoulides M, Machado-de-Ávila RA, Coelho EAF. 2022. Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microbial Pathogenesis, 162, 105341. [CrossRef] [PubMed] [Google Scholar]
  28. Geysen HM, Meloen RH, Barteling SJ. 1984. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, 81, 3998–4002. [CrossRef] [PubMed] [Google Scholar]
  29. González AC, Martínez E, Carmelo E, Piñero JE, Alonso V, Del Castillo A, Valladares B. 2002. Analysis of NLS and rRNA binding motifs in the L25 ribosomal protein from Leishmania (Viannia) braziliensis : investigation of its diagnostic capabilities. Parasitology, 125, 51–57. [CrossRef] [PubMed] [Google Scholar]
  30. Goto H, Lindoso JAL. 2010. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Review of Anti-Infective Therapy, 8, 419–433. [CrossRef] [PubMed] [Google Scholar]
  31. Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. 2015. Cutaneous and mucocutaneous leishmaniasis. Journal of the American Academy of Dermatology, 73, 911–926. [CrossRef] [PubMed] [Google Scholar]
  32. Kassa M, Abdellati S, Cnops L, Bremer Hinckel BC, Yeshanew A, Hailemichael W, Vogt F, Adriaensen W, Mertens P, Diro E, van Griensven J, Van den Bossche D. 2020. Diagnostic accuracy of direct agglutination test, rK39 ELISA and six rapid diagnostic tests among visceral leishmaniasis patients with and without HIV coinfection in Ethiopia. PLOS Neglected Tropical Diseases, 14, e0008963. [CrossRef] [PubMed] [Google Scholar]
  33. Kühne V, Rezaei Z, Pitzinger P, Büscher P. 2019. Systematic review on antigens for serodiagnosis of visceral leishmaniasis, with a focus on East Africa. PLOS Neglected Tropical Diseases, 13, e0007658. [CrossRef] [PubMed] [Google Scholar]
  34. Lévêque MF, Battery E, Delaunay P, Lmimouni BE, Aoun K, L’Ollivier C, Bastien P, Mary C, Pomares C, Fillaux J, Lachaud L. 2020. Evaluation of six commercial kits for the serological diagnosis of Mediterranean visceral leishmaniasis. PLOS Neglected Tropical Diseases, 14, e0008139. [CrossRef] [PubMed] [Google Scholar]
  35. Link JS, Alban SM, Soccol CR, Pereira GVM, Thomaz-Soccol V. 2017. Synthetic peptides as potential antigens for cutaneous leishmaniosis diagnosis. Journal of Immunology Research, 2017, 1–10. [CrossRef] [Google Scholar]
  36. Liu I, Hsueh P, Lin C, Chiu C, Kao C, Liao M, Wu H. 2004. Disease-Specific B Cell Epitopes for serum antibodies from patients with severe acute respiratory syndrome (SARS) and serologic detection of SARS antibodies by epitope-based peptide antigens. Journal of Infectious Diseases, 190, 797–809. [CrossRef] [PubMed] [Google Scholar]
  37. Machado AS, Ramos FF, Oliveira-da-Silva JA, Santos TTO, Ludolf F, Tavares GSV, Costa LE, Lage DP, Steiner BT, Chaves AT, Chávez-Fumagalli MA, de Magalhães-Soares DF, Silveira JAG, Napoles KMN, Tupinambás U, Duarte MC, Machado-de-Ávila RA, Bueno LL, Fujiwara RT, Moreira RLF, Rocha MOC, Caligiorne RB, Coelho EAF. 2020. A Leishmania infantum hypothetical protein evaluated as a recombinant protein and specific B-cell epitope for the serodiagnosis and prognosis of visceral leishmaniasis. Acta Tropica, 203, 105318. [CrossRef] [PubMed] [Google Scholar]
  38. Mahendru S, Roy K, Kukreti S. 2017. Peptide biomarkers: Exploring the diagnostic aspect. Current Protein & Peptide Science, 18, 914–919. [PubMed] [Google Scholar]
  39. Malchiodi EL, Chiaramonte MG, Taranto NJ, Zwirner NW, Margni RA. 2008. Cross-reactivity studies and differential serodiagnosis of human infections caused by Trypanosoma cruzi and Leishmania spp; use of immunoblotting and ELISA with a purified antigen (Ag163B6). Clinical & Experimental Immunology, 97, 417–423. [CrossRef] [Google Scholar]
  40. Medeiros RMTE, Carvalho AMRS, Ferraz I de A, Medeiros FAC, Cruz L dos R, Rocha MO da C, Coelho EAF, Gonçalves DU, Mendes TA de O, Duarte MC, Menezes-Souza D. 2022. Mapping linear B-cell epitopes of the tryparedoxin peroxidase and its implications in the serological diagnosis of tegumentary leishmaniasis. Acta Tropica, 232, 106521. [CrossRef] [PubMed] [Google Scholar]
  41. Menezes-Souza D, Mendes TA de O, Gomes M de S, Bartholomeu DC, Fujiwara RT. 2015. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope. PLoS Neglected Tropical Diseases, 9, e3426. [CrossRef] [PubMed] [Google Scholar]
  42. Menezes-Souza D, Mendes TA de O, Gomes MS De, Reis-Cunha JL, Nagem RAP, Carneiro CM, Coelho EAF, Cunha Galvão LM Da, Fujiwara RT, Bartholomeu DC. 2014. Epitope mapping of the HSP83.1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. Clinical and Vaccine Immunology, 21, 949–959. [CrossRef] [PubMed] [Google Scholar]
  43. Menezes-Souza D, Oliveira Mendes TA de, Araújo Leão AC, Souza Gomes M de, Fujiwara RT, Bartholomeu DC. 2015. Linear B-cell epitope mapping of MAPK3 and MAPK4 from Leishmania braziliensis: implications for the serodiagnosis of human and canine leishmaniasis. Applied Microbiology and Biotechnology, 99, 1323–1336. [CrossRef] [PubMed] [Google Scholar]
  44. Milchram L, Soldo R, Regele V, Schönthaler S, Degeorgi M, Baumgartner S, Kopp E, Weinhäusel A. 2022. A novel click chemistry-based peptide ELISA protocol: development and technical evaluation. BioTechniques, 72, 134–142. [CrossRef] [PubMed] [Google Scholar]
  45. Mucci J, Carmona SJ, Volcovich R, Altcheh J, Bracamonte E, Marco JD, Nielsen M, Buscaglia CA, Agüero F. 2017. Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes. PLOS Neglected Tropical Diseases, 11(10), e0005972. [CrossRef] [PubMed] [Google Scholar]
  46. Noya O, Patarroyo M, Guzman F, de Noya B. 2003. Immunodiagnosis of parasitic diseases with synthetic peptides. Current Protein & Peptide Science, 4, 299–308. [CrossRef] [PubMed] [Google Scholar]
  47. Oliveira-da-Silva JA, Machado AS, Ramos FF, Tavares GSV, Lage DP, Ludolf F, Steiner BT, Reis TAR, Santos TTO, Costa LE, Martins VT, Galvani NC, Chaves AT, Oliveira JS, Chávez-Fumagalli MA, de Magalhães-Soares DF, Duarte MC, Menezes-Souza D, Silveira JAG, Moreira RLF, Machado-de-Ávila RA, Tupinambás U, Gonçalves DU, Coelho EAF. 2020. Evaluation of Leishmania infantum pyridoxal kinase protein for the diagnosis of human and canine visceral leishmaniasis. Immunology Letters, 220, 11–20. [CrossRef] [PubMed] [Google Scholar]
  48. Oliveira-da-Silva JA, Machado AS, Tavares GSV, Ramos FF, Lage DP, Ludolf F, Steiner BT, Reis TAR, Santos TTO, Costa LE, Bandeira RS, Martins VT, Galvani NC, Chaves AT, Oliveira JS, Chávez-Fumagalli MA, Tupinambás U, de Magalhães-Soares DF, Silveira JAG, Lyon S, Machado-de-Ávila RA, Coelho EAF. 2020. Biotechnological applications from a Leishmania amastigote-specific hypothetical protein in the canine and human visceral leishmaniasis. Microbial Pathogenesis, 147, 104283. [CrossRef] [PubMed] [Google Scholar]
  49. O’Neal SE, Guimarães LH, Machado PR, Alcântara L, Morgan DJ, Passos S, Glesby MJ, Carvalho EM. 2007. Influence of helminth infections on the clinical course of and immune response to Leishmania braziliensis cutaneous leishmaniasis. Journal of Infectious Diseases, 195, 142–148. [CrossRef] [PubMed] [Google Scholar]
  50. Ortalli M, Lorrai D, Gaibani P, Rossini G, Vocale C, Re MC, Varani S. 2020. Serodiagnosis of Visceral leishmaniasis in Northeastern Italy: Evaluation of seven serological tests. Microorganisms, 8, 1847. [CrossRef] [PubMed] [Google Scholar]
  51. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. [CrossRef] [Google Scholar]
  52. Pan American Health Organization. 2019. Manual of procedures for leishmaniases surveillance and control in the Americas. PAHO: Washington, DC. [Google Scholar]
  53. Pan American Health Organization. 2020. Interactive Atlas of Leishmaniasis in the Americas: Clinical Aspects and Differential Diagnosis. Washington, D.C.: Organización Panamericana de la Salud. [Google Scholar]
  54. Pan American Health Organization. 2021. Leishmaniasis: Epidemiological report of the Americas. Washington, D.C.: PAHO. [Google Scholar]
  55. Pandey S, Malviya G, Chottova Dvorakova M. 2021. Role of peptides in diagnostics. International Journal of Molecular Sciences, 22, 8828. [CrossRef] [PubMed] [Google Scholar]
  56. Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG, Guderian JA, Colombara D, Abdoon AO, Mukhtar MM, Mondal D, Esfandiari J, Kumar S, Chun P, Reed SG, Bhatia A. 2010. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLOS Neglected Tropical Diseases, 4(9), e822. [CrossRef] [PubMed] [Google Scholar]
  57. Piccioni A, Valletta F, Zanza C, Longhitano Y, Torelli E, de Cunzo T, Esperide A, Brigida M, Ojetti V, Covino M, Taurone S, Ralli M, Artico M, Franceschi F. 2020. Rapid clinical management of leishmaniasis in emergency department: A case report with clinical review of recent literature. Biology, 9, 351. [CrossRef] [PubMed] [Google Scholar]
  58. Ramos FF, Tavares GSV, Ludolf F, Machado AS, Santos TTO, Gonçalves IAP, Dias ACS, Alves PT, Fraga VG, Bandeira RS, Oliveira-da-Silva JA, Reis TAR, Lage DP, Martins VT, Freitas CS, Chaves AT, Guimarães NS, Chávez-Fumagalli MA, Tupinambás U, Rocha MOC, Cota GF, Fujiwara RT, Bueno LL, Goulart LR, Coelho EAF. 2021. Diagnostic application of sensitive and specific phage-exposed epitopes for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology, 148, 1706–1714. [CrossRef] [PubMed] [Google Scholar]
  59. Raoufi E, Hemmati M, Eftekhari S, Khaksaran K, Mahmodi Z, Farajollahi MM, Mohsenzadegan M. 2019. Epitope prediction by novel immunoinformatics approach: A state-of-the-art review. International Journal of Peptide Research and Therapeutics, 26, 1155–1163. [Google Scholar]
  60. Review Manager (Rev Mag). 2014. Computer program. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration. [Google Scholar]
  61. Rockberg J, Löfblom J, Hjelm B, Uhlén M, Ståhl S. 2008. Epitope mapping of antibodies using bacterial surface display. Nature Methods, 5, 1039–1045. [CrossRef] [PubMed] [Google Scholar]
  62. Salles BCS, Costa LE, Alves PT, Dias ACS, Vaz ER, Menezes-Souza D, Ramos FF, Duarte MC, Roatt BM, Chávez-Fumagalli MA, Tavares CAP, Gonçalves DU, Rocha RL, Goulart LR, Coelho EAF. 2017. Leishmania infantum mimotopes and a phage – ELISA assay as tools for a sensitive and specific serodiagnosis of human visceral leishmaniasis. Diagnostic Microbiology and Infectious Disease, 87, 219–225. [CrossRef] [PubMed] [Google Scholar]
  63. Salles BCS, Dias DS, Steiner BT, Lage DP, Ramos FF, Ribeiro PAF, Santos TTO, Lima MP, Costa LE, Chaves AT, Chávez-Fumagalli MA, Fujiwaraa RT, Buenoa LL, Caligiorne RB, de Magalhães-Soares DF, Silveira JAG, Machado-de-Ávila RA, Gonçalves DU, Coelho EAF. 2019. Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology, 224, 163–171. [CrossRef] [PubMed] [Google Scholar]
  64. Sanchez MCA, Celeste BJ, Lindoso JAL, Fujimori M, de Almeida RP, Fortaleza CMCB, Druzian AF, Lemos APF, de Melo VCA, Miranda Paniago AM, Queiroz IT, Goto H. 2020. Performance of rK39-based immunochromatographic rapid diagnostic test for serodiagnosis of visceral leishmaniasis using whole blood, serum and oral fluid. PLoS One, 15, e0230610. [CrossRef] [PubMed] [Google Scholar]
  65. Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. 2017. Fundamentals and methods for T- and B-Cell epitope prediction. Journal of Immunology Research, 2017, 1–14. [CrossRef] [Google Scholar]
  66. Schwing A, Pomares C, Majoor A, Boyer L, Marty P, Michel G. 2019. Leishmania infection: Misdiagnosis as cancer and tumor-promoting potential. Acta Tropica, 197, 104855. [CrossRef] [PubMed] [Google Scholar]
  67. Söllner J, Mayer B. 2006. Machine learning approaches for prediction of linear B-cell epitopes on proteins. Journal of Molecular Recognition, 19, 200–208. [CrossRef] [PubMed] [Google Scholar]
  68. Songprakhon P, Thaingtamtanha T, Limjindaporn T, Puttikhunt C, Srisawat C, Luangaram P, Dechtawewat T, Uthaipibull C, Thongsima S, Yenchitsomanus P, Malasit P, Noisakran S. 2020. Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Scientific Reports, 10, 12933. [CrossRef] [PubMed] [Google Scholar]
  69. Vale DL, Dias DS, Machado AS, Ribeiro PAF, Lage DP, Costa LE, Steiner BT, Tavares GSV, Ramos FF, Martínez-Rodrigo A, Chávez-Fumagalli MA, Caligiorne RB, de Magalhães-Soares DF, Silveira JAG, Machado-de-Ávila RA, Teixeira AL, Coelho EAF. 2019. Diagnostic evaluation of the amastin protein from Leishmania infantum in canine and human visceral leishmaniasis and immunogenicity in human cells derived from patients and healthy controls. Diagnostic Microbiology and Infectious Disease, 95, 134–143. [CrossRef] [PubMed] [Google Scholar]
  70. Vale DL, Machado AS, Ramos FF, Lage DP, Freitas CS, de Oliveira D, Galvani NC, Luiz GP, Fagundes MI, Fernandes BB, Oliveira-da-Silva JA, Ludolf F, Tavares GSV, Guimarães NS, Chaves AT, Chávez-Fumagalli MA, Tupinambás U, Rocha MOC, Gonçalves DU, Martins VT, Machado-de-Ávila RA, Coelho EAF. 2022. Evaluation from a B-cell epitope-based chimeric protein for the serodiagnosis of tegumentary and visceral leishmaniasis. Microbial Pathogenesis, 167, 105562. [CrossRef] [PubMed] [Google Scholar]
  71. Vexenat A de C, Santana JM, Teixeira ARL. 1996. Cross-reactivity of antibodies in human infections by the kinetoplastid protozoa Trypanosoma cruzi, Leishmania chagasi and Leishmania (Viannia) braziliensis. Revista Do Instituto de Medicina Tropical de São Paulo, 38, 177–185. [CrossRef] [PubMed] [Google Scholar]
  72. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. 2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47, D339–D343. [CrossRef] [PubMed] [Google Scholar]
  73. Wang L-F, Yu M. 2004. Epitope identification and discovery using phage display libraries: Applications in vaccine development and diagnostics. Current Drug Targets, 5, 1–15. [CrossRef] [PubMed] [Google Scholar]
  74. Whiting PF. 2011. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155, 529. [CrossRef] [PubMed] [Google Scholar]
  75. World Health Organization. 2010. Control of the leishmaniases. WHO: Switzerland. [Google Scholar]
  76. World Health Organization. 2011. Visceral leishmaniasis rapid diagnostic test performance. WHO: Switzerland. [Google Scholar]
  77. World Health Organization. 2016. Weekly Epidemiological Record. WHO: Switzerland. [Google Scholar]
  78. World Health Organization. 2017. Manual on case management and surveillance of the leishmaniases in the WHO European Region (2017). WHO: Switzerland. [Google Scholar]
  79. World Health Organization. 2019. Manual of procedures for leishmaniases surveillance and control in the Americas. Pan American Health Organization. [Google Scholar]
  80. World Health Organization. 2021. Control of Neglected Tropical Diseases. WHO: Switzerland. [Google Scholar]
  81. World Health Organization. 2021. Weekly Epidemiological Record. WHO: Switzerland. [Google Scholar]
  82. Zhou X, Obuchowski NA, McClish DK. 2011. Statistical methods in diagnostic medicine, 2nd edn. Wiley-Blackwell: Hoboken, NJ. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.